Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 13(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33923984

RESUMO

Viruses are increasingly used as vectors for delivery of genetic material for gene therapy and vaccine applications. Recombinant adeno-associated viruses (rAAVs) are a class of viral vector that is being investigated intensively in the development of gene therapies. To develop efficient rAAV therapies produced through controlled and economical manufacturing processes, multiple challenges need to be addressed starting from viral capsid design through identification of optimal process and formulation conditions to comprehensive quality control. Addressing these challenges requires fit-for-purpose analytics for extensive characterization of rAAV samples including measurements of capsid or particle titer, percentage of full rAAV particles, particle size, aggregate formation, thermal stability, genome release, and capsid charge, all of which may impact critical quality attributes of the final product. Importantly, there is a need for rapid analytical solutions not relying on the use of dedicated reagents and costly reference standards. In this study, we evaluate the capabilities of dynamic light scattering, multiangle dynamic light scattering, and SEC-MALS for analyses of rAAV5 samples in a broad range of viral concentrations (titers) at different levels of genome loading, sample heterogeneity, and sample conditions. The study shows that DLS and MADLS® can be used to determine the size of full and empty rAAV5 (27 ± 0.3 and 33 ± 0.4 nm, respectively). A linear range for rAAV5 size and titer determination with MADLS was established to be 4.4 × 1011-8.7 × 1013 cp/mL for the nominally full rAAV5 samples and 3.4 × 1011-7 × 1013 cp/mL for the nominally empty rAAV5 samples with 3-8% and 10-37% CV for the full and empty rAAV5 samples, respectively. The structural stability and viral load release were also inferred from a combination of DLS, SEC-MALS, and DSC. The structural characteristics of the rAAV5 start to change from 40 °C onward, with increasing aggregation observed. With this study, we explored and demonstrated the applicability and value of orthogonal and complementary label-free technologies for enhanced serotype-independent characterization of key properties and stability profiles of rAAV5 samples.

2.
Vaccines (Basel) ; 10(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35062710

RESUMO

Novel vaccine platforms for delivery of nucleic acids based on viral and non-viral vectors, such as recombinant adeno associated viruses (rAAV) and lipid-based nanoparticles (LNPs), hold great promise. However, they pose significant manufacturing and analytical challenges due to their intrinsic structural complexity. During product development and process control, their design, characterization, and quality control require the combination of fit-for-purpose complementary analytical tools. Moreover, an in-depth methodological expertise and holistic approach to data analysis are required for robust measurements and to enable an adequate interpretation of experimental findings. Here the combination of complementary label-free biophysical techniques, including dynamic light scattering (DLS), multiangle-DLS (MADLS), Electrophoretic Light Scattering (ELS), nanoparticle tracking analysis (NTA), multiple detection SEC and differential scanning calorimetry (DSC), have been successfully used for the characterization of physical and chemical attributes of rAAV and LNPs encapsulating mRNA. Methods' performance, applicability, dynamic range of detection and method optimization are discussed for the measurements of multiple critical physical-chemical quality attributes, including particle size distribution, aggregation propensity, polydispersity, particle concentration, particle structural properties and nucleic acid payload.

3.
Philos Trans A Math Phys Eng Sci ; 368(1927): 4439-51, 2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20732896

RESUMO

Zeta potential is the key parameter that controls electrostatic interactions in particle dispersions. Laser Doppler electrophoresis is an accepted method for the measurement of particle electrophoretic mobility and hence zeta potential of dispersions of colloidal size materials. Traditionally, samples measured by this technique have to be optically transparent. Therefore, depending upon the size and optical properties of the particles, many samples will be too concentrated and will require dilution. The ability to measure samples at or close to their neat concentration would be desirable as it would minimize any changes in the zeta potential of the sample owing to dilution. However, the ability to measure turbid samples using light-scattering techniques presents a number of challenges. This paper discusses electrophoretic mobility measurements made on turbid samples at high concentration using a novel cell with reduced path length. Results are presented on two different sample types, titanium dioxide and a polyurethane dispersion, as a function of sample concentration. For both of the sample types studied, the electrophoretic mobility results show a gradual decrease as the sample concentration increases and the possible reasons for these observations are discussed. Further, a comparison of the data against theoretical models is presented and discussed. Conclusions and recommendations are made from the zeta potential values obtained at high concentrations.

4.
Biochim Biophys Acta ; 1672(1): 12-20, 2004 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-15056488

RESUMO

The physical properties of non-viral vector/DNA nanoparticles in physiological aqueous solution are poorly understood. A Fluid Particle Image Analyser (FPIA), normally used for analysis of industrial and environmental fluids, was used to visualise individual (Lys)(16)-containing peptide/DNA particles. Eight (Lys)(16)-containing synthetic peptides were used to generate peptide/DNA particles at a constant + to - charge ratio of 2.8:1 with 10 microg/ml of plasmid DNA in phosphate buffered saline. Dynamic Light Scattering (DLS) and gene delivery studies were also performed. We present the first images of non-viral vector/DNA nanoparticles in physiological aqueous solution, together with precise measurements of individual particle size and shape in solution and, for the first time, an accurate measure of particle number. Particle size and shape, particle number, and efficiency for gene delivery varied markedly with different peptides. Under standard conditions for in vitro gene delivery, we estimate approximately 60 peptide/DNA nanoparticles per target cell, each containing approximately 70,000 plasmids. This novel capacity to image individual vector/DNA nanoparticles in solution and to count them accurately will enable a more precise assessment of non-viral gene delivery systems, and a more quantitative interpretation of gene delivery experiments.


Assuntos
DNA/química , Vetores Genéticos/química , Polilisina/química , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Venenos de Crotalídeos/química , Venenos de Crotalídeos/metabolismo , DNA/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos/metabolismo , Integrinas/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Polilisina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA