Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(4): 5668-5683, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38127231

RESUMO

This study was undertaken to determine the distribution of soil bacteria capable of utilizing both n-alkanes and aromatic hydrocarbons. These microorganisms have not been comprehensively investigated so far. Ten contaminated (4046-43,861 mg of total petroleum hydrocarbons (TPH) kg-1 of dry weight of soil) and five unpolluted (320-2754 mg TPH kg-1 of dry weight of soil) soil samples from temperate, arid, and Alpine soils were subjected to isolation of degraders with extended preferences and shotgun metagenomic sequencing (selected samples). The applied approach allowed to reveal that (a) these bacteria can be isolated from pristine and polluted soils, and (b) the distribution of alkane monooxygenase (alkB) and aromatic ring hydroxylating dioxygenases (ARHDs) encoding genes is not associated with the contamination presence. Some alkB and ARHD genes shared the same taxonomic affiliation; they were most often linked with the Rhodococcus, Pseudomonas, and Mycolicibacterium genera. Moreover, these taxa together with the Paeniglutamicibacter genus constituted the most numerous groups among 132 culturable strains growing in the presence of both n-alkanes and aromatic hydrocarbons. All those results indicate (a) the prevalence of the hydrocarbon degraders with extended preferences and (b) the potential of uncontaminated soil as a source of hydrocarbon degraders applied for bioremediation purposes.


Assuntos
Hidrocarbonetos Aromáticos , Petróleo , Poluentes do Solo , Alcanos , Solo , Bactérias/genética , Hidrocarbonetos , Biodegradação Ambiental , Microbiologia do Solo
2.
Int J Mol Sci ; 24(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37686411

RESUMO

This study aimed at characterizing some adaptive changes in Plantago lanceolata L. exposed to harsh conditions of a desert-like environment generating physiological stress of limited water availability and exposure to strong light. It was clearly shown that the plants were capable of adapting their root system and vascular tissues to enable efficient vegetative performance. Soil analyses, as well as nitrogen isotope discrimination data show that P. lanceolata leaves in a desert-like environment had better access to nitrogen (nitrite/nitrate) and were able to fix it efficiently, as compared to the plants growing in the surrounding forest. The arbuscular mycorrhiza was also shown to be well-developed, and this was accompanied by higher bacterial frequency in the root zone, which might further stimulate plant growth. A closer look at the nitrogen content and leaf veins with a higher number of vessels and a greater vessel diameter made it possible to define the changes developed by the plants populating sandy habitats as compared with the vegetation sites located in the nearby forest. A determination of the photosynthesis parameters indicates that the photochemical apparatus in P. lanceolata inhabiting the desert areas adapted slightly to the desert-like environment and the time of day, with some changes of the reaction center (RC) size (photosystem II, PSII), while the plants' photochemical activity was at a similar level. No differences between the two groups of plants were observed in the dissipation of light energy. The exposure of plants to harsh conditions of a desert-like environment increased the water use efficiency (WUE) value in parallel with possible stimulation of the ß-carboxylation pathway.


Assuntos
Micorrizas , Plantago , Aclimatação , Florestas , Nitrogênio
3.
Metabolites ; 13(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36984899

RESUMO

Copper-zinc superoxide dismutase (SOD1) is an antioxidant enzyme that catalyzes the disproportionation of superoxide anion to hydrogen peroxide and molecular oxygen (dioxygen). The yeast Saccharomyces cerevisiae lacking SOD1 (Δsod1) is hypersensitive to the superoxide anion and displays a number of oxidative stress-related alterations in its phenotype. We compared proteomes of the wild-type strain and the Δsod1 mutant employing two-dimensional gel electrophoresis and detected eighteen spots representing differentially expressed proteins, of which fourteen were downregulated and four upregulated. Mass spectrometry-based identification enabled the division of these proteins into functional classes related to carbon metabolism, amino acid and protein biosynthesis, nucleotide biosynthesis, and metabolism, as well as antioxidant processes. Detailed analysis of the proteomic data made it possible to account for several important morphological, biochemical, and physiological changes earlier observed for the SOD1 mutation. An example may be the proposed additional explanation for methionine auxotrophy. It is concluded that protein comparative profiling of the Δsod1 yeast may serve as an efficient tool in the elucidation of the mutation-based systemic alterations in the resultant S. cerevisiae phenotype.

4.
Front Plant Sci ; 13: 820097, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350303

RESUMO

The common ice plant, Mesembryanthemum crystallinum L., has recently been found as a good candidate for phytoremediation of heavy-metal polluted soils. This semi-halophyte is a C3/CAM (Crassulacean acid metabolism) intermediate plant capable of tolerating extreme levels of cadmium in the soil. The aim of the work was to obtain and characterize novel, Cd-tolerant microbial strains that populate the root zone of M. crystallinum performing different types of photosynthetic metabolism and growing in Cd-contaminated substrates. The plants exhibiting either C3 or CAM photosynthesis were treated for 8 days with different CdCl2 doses to obtain final Cd concentrations ranging from 0.82 to 818 mg⋅kg-1 of soil d.w. The CAM phase was induced by highly saline conditions. After treatment, eighteen bacterial and three yeast strains were isolated from the rhizosphere and, after preliminary Cd-resistance in vitro test, five bacterial strains were selected and identified with a molecular proteomics technique. Two strains of the species Providencia rettgeri (W6 and W7) were obtained from the C3 phase and three (one Paenibacillus glucanolyticus S7 and two Rhodococcus erythropolis strains: S4 and S10) from the CAM performing plants. The isolates were further tested for Cd-resistance (treatment with either 1 mM or 10 mM CdCl2) and salinity tolerance (0.5 M NaCl) in model liquid cultures (incubation for 14 days). Providencia rettgeri W7 culture remained fully viable at 1 mM Cd, whereas Rh. erythropolis S4 and S10 together with P. glucanolyticus S7 were found to be resistant to 10 mM Cd in the presence of 0.5 M NaCl. It is suggested that the high tolerance of the common ice plant toward cadmium may result from the synergic action of the plant together with the Cd/salt-resistant strains occurring within rhizospheral microbiota. Moreover, the isolated bacteria appear as promising robust microorganisms for biotechnological applications in bio- and phytoremediation projects.

5.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614102

RESUMO

Alcohol and aldehyde dehydrogenases are especially relevant enzymes involved in metabolic and detoxification reactions that occur in living cells. The comparison between the gene expression, protein content, and enzymatic activities of cytosolic alcohol and aldehyde dehydrogenases of the wild-type strain and the Δsod1 mutant lacking superoxide dismutase 1, which is hypersensitive to alcohols and aldehydes, shows that the activity of these enzymes is significantly higher in the Δsod1 mutant, but this is not a mere consequence of differences in the enzymatic protein content nor in the expression levels of genes. The analysis of the NAD(H) and NADP(H) content showed that the higher activity of alcohol and aldehyde dehydrogenases in the Δsod1 mutant could be a result of the increased availability of pyridine nucleotide cofactors. The higher level of NAD+ in the Δsod1 mutant is not related to the higher level of tryptophan; in turn, a higher generation of NADPH is associated with the upregulation of the pentose phosphate pathway. It is concluded that the increased sensitivity of the Δsod1 mutant to alcohols and aldehydes is not only a result of the disorder of redox homeostasis caused by the induction of oxidative stress but also a consequence of the unbalance between pyridine nucleotide cofactors.


Assuntos
Álcoois , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Superóxido Dismutase-1 , Álcoois/metabolismo , Aldeídos/metabolismo , Etanol/metabolismo , NAD/metabolismo , NADP/metabolismo , Oxirredução , Piridinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Plants (Basel) ; 10(7)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34371628

RESUMO

Methyl jasmonate (MJ) is an important plant growth regulator that plays a key role in tolerance to biotic and abiotic stresses. In this research, the effects of exogenous MJ on cold tolerance, photosynthesis, activity and gene expression of antioxidant enzymes, proline accumulation, and expression of cold-regulated (COR) genes in wheat seedlings under low temperature (4 °C) were investigated. Exogenous MJ treatment (1 µM) promoted wheat cold tolerance before and during cold exposure. Low temperature significantly decreased photosynthetic parameters, whereas MJ application led to their partial recovery under cold exposure. Hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels increased in response to low temperature, and this was counteracted by MJ application. Exogenous MJ significantly enhanced the activities of antioxidant enzymes and upregulated the expression of MnSOD and CAT during cold exposure. MJ application also led to enhanced proline content before 4 °C exposure, whereas the P5CS gene expression was upregulated by MJ's presence at both normal (22 °C) and low (4 °C) temperatures. It was also shown that MJ tended to upregulate the expression of the COR genes WCS19 and WCS120 genes. We conclude that exogenous MJ can alleviate the negative effect of cold stress thus increasing wheat cold tolerance.

7.
N Biotechnol ; 61: 80-89, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33202308

RESUMO

Bio-based solutions are expected to ensure technological circularity in priority areas such as agriculture, biotechnology, ecology, green industry or energy. Although Poland, unlike the other EU member states, has not yet adopted a precise political strategy to promote bioeconomy, it has taken several actions to enable smart, sustainable and inclusive growth. This goal can be achieved by developing selected bioeconomy-related areas such as the biogas industry together with novel technologies implemented to optimize treatment of municipal sewage and management of organic solid waste. Here, the relatively strong status of the Polish biogas sector is presented. The widely used practice of sewage sludge biomethanation has led to construction of numerous complex installations combining biological wastewater treatment plants with anaerobic digesters. Based on physico-chemical processing of biostabilized sludges, a novel method for efficient granulated soil fertilizer production is elaborated, in line with the concept of circular economy and the notion of "waste-to-product". It is also shown that anaerobic fermentation of sewage sludges can be optimized by co-digestion with properly selected co-substrates to increase bioprocess yield and improve the resultant digestate fertilizer quality. The problem of post-fermentation eutrophic sludge liquors, environmentally hazardous waste effluents requiring proper treatment prior to discharge or field application, is addressed. Attempts to optimize biological treatment of digestate liquors with complex microbial consortia are presented. The Polish innovations described show that the "zero waste" path in circular bioeconomy may bring advantageous results in terms of transformation of waste materials into commercial, added-value products together with recovery of water resources.


Assuntos
Eliminação de Resíduos Líquidos/economia , Gerenciamento de Resíduos/economia , Águas Residuárias/economia , Purificação da Água/economia , Polônia , Esgotos
8.
Plants (Basel) ; 9(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961911

RESUMO

The common ice plant (Mesembryanthemum crystallinum L.) is a widely studied model due to its tolerance to numerous biotic and abiotic stresses. In this study, carried out in model pots, the plants were treated with variant doses of Cd(II) and Cr(VI) and proved resistant to extreme levels of these heavy metals. Initial toxicity symptoms were observed upon final concentrations of 818 mg Cd kg-1 soil d.w., and 1699 mg Cr kg-1 applied as potassium chromate. Biometric analyses revealed that none of the Cr(VI) doses affected dry weight of the plant organs thus maintaining the shoot-to-root ratio. The Cd and Cr hypertolerance strategies were divergent and resulted in different accumulation patterns. For the case of Cd(II), an excluder-like mechanism was developed to prevent the plant from toxicity. For chromate, high accumulation potential together with Cr(VI) root-to-shoot translocation at sublethal concentrations was revealed (up to 6152 mg Cr kg-1 shoot at 4248 mg Cr kg-1 soil). It is concluded that M. crystallinum reveals considerable phytoremediation capabilities due to unique growth potential in contaminated substrates and is suitable for bioreclamation of degraded soils. The plant is especially applicable for efficient phytoextraction of chromate-contamination, whereas for Cd-affected areas it may have a phytostabilizing effect.

9.
Molecules ; 25(8)2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295156

RESUMO

Aging is accompanied by gradual accumulation of molecular damage within cells in response to oxidative stress resulting from adverse environmental factors, inappropriate lifestyle, and numerous diseases. Adequate antioxidant intake is a key factor of proper diet. The study aimed to assess the antioxidant/antiradical capacities of Cucurbita fruits (18 cultivars of the species: C. maxima Duch., C. moschata Duch., C. pepo L., and C. ficifolia Bouché) grown in central Europe. The analyses were based on the FRAP (ferric reducing antioxidant power), CUPRAC (cupric ion reducing antioxidant capacity), and DPPH (2,2-diphenyl-1-picrylhydrazyl radical) assays. The content of phenolic compounds and ß-carotene was evaluated with HPLC (high performance liquid chromatography), while the main macro- and micronutrients by ICP-OES (inductively coupled plasma mass spectrometry). The results revealed high intraspecies variability within the Cucurbita genus. The Japanese 'Kogigu' fruits were distinguished as extraordinary sources of phenolic compounds, including syringic and protocatechuic acids, catechin, and kaempferol. Another popular cultivar 'Hokkaido' exhibited the highest antioxidant and antiradical capacities. Most of the fruits proved to be rich sources of zinc and copper. The obtained data are discussed in the context of optimized nutrition of the elderly and suggest that Cucurbita fruits should become daily components of their diet.


Assuntos
Antioxidantes/química , Cucurbita/química , Frutas/química , Nutrientes/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Dieta , Alimento Funcional/análise , Micronutrientes/análise , Micronutrientes/química , Nutrientes/análise
10.
Plants (Basel) ; 9(4)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283631

RESUMO

Many areas intended for crop production suffer from the concomitant occurrence of heavy metal pollution and elevated salinity; therefore, halophytes seem to represent a promising perspective for the bioremediation of contaminated soils. In this study, the influence of Cd treatment (0.01-10.0 mM) and salinity stress (0.4 M NaCl) on the expression of genes involved in heavy metal uptake (irt2-iron-regulated protein 2, zip4-zinc-induced protein 4), vacuolar sequestration (abcc2-ATP-binding cassette 2, cax4-cation exchanger 2 pcs1-phytochelatin synthase 1) and translocation into aerial organs (hma4-heavy metal ATPase 4) were analyzed in a soil-grown semi-halophyte Mesembryanthemum crystallinum. The upregulation of irt2 expression induced by salinity was additionally enhanced by Cd treatment. Such changes were not observed for zip4. Stressor-induced alterations in abcc2, cax4, hma4 and pcs1 expression were most pronounced in the root tissue, and the expression of cax4, hma4 and pcs1 was upregulated in response to salinity and Cd. However, the cumulative effect of both stressors, similar to the one described for irt2, was observed only in the case of pcs1. The importance of salt stress in the irt2 expression regulation mechanism is proposed. To the best of our knowledge, this study is the first to report the combined effect of salinity and heavy metal stress on genes involved in heavy metal trafficking.

11.
J Plant Physiol ; 240: 153005, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31271976

RESUMO

Many areas exhibiting increased concentrations of soluble salts are simultaneously polluted with heavy metals (HM), and halophytes with extended tolerance to heavy metal toxicity seem to represent a promising tool for their phytoremediation. In this study, the response of the soil-grown C3-CAM (Crassulacean acid metabolism) intermediate halophyte Mesembryanthemum crystallinum (common ice plant) to increased concentrations of Cd (0.01-1 mM) was investigated. None of the tested Cd treatments affected growth parameters or tissue water content of either C3 or CAM-performing plants. Chlorophyll a fluorescence confirmed high tolerance of the photosynthetic apparatus of both metabolic states towards Cd. Plants performing both photosynthesis types accumulated significant Cd amounts only under the highest (1 mM) treatment, and the metal was primarily deposited in the roots, which are features typical of an excluding strategy. Upon the application of 1 mM Cd solution CAM-performing plants, due to the NaCl pre-treatment applied for CAM induction, were exposed to significantly higher amounts of bioavailable Cd in comparison with those of C3-performing plants. As a result, roots of CAM plants accumulated over 4-fold higher Cd amounts when compared with C3 plants. In our opinion, enhanced Cd-accumulating potential observed in CAM-performing plants was the effect of osmotic stress episode and resulting modifications e.g. in the detoxifying capacity of the antioxidative system. Increased antioxidative potential of NaCl pre-treated plants was pronounced with significantly higher activity of CuZnSOD (copper-zinc superoxide dismutase), not achievable in C3 plants subjected to high Cd concentrations. Moreover, the applied Cd doses induced SOD activity in a compartment-dependent manner only in C3 plants. We confirmed that none of the applied Cd concentrations initiated the metabolic shift from C3 to CAM.


Assuntos
Cádmio/efeitos adversos , Mesembryanthemum/efeitos dos fármacos , Plantas Tolerantes a Sal/efeitos dos fármacos , Poluentes do Solo/efeitos adversos , Relação Dose-Resposta a Droga , Mesembryanthemum/enzimologia , Mesembryanthemum/crescimento & desenvolvimento , Mesembryanthemum/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/enzimologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plantas Tolerantes a Sal/enzimologia , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/metabolismo , Superóxido Dismutase/metabolismo
12.
Crit Rev Biotechnol ; 39(1): 114-136, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30372626

RESUMO

Innovation is a key determinant of sustainable growth. Biotechnology (BT) is one such industry that has witnessed a revolution in innovative ideas leading to the founding of many new companies based on providing products, solutions and services, stretching from the food industry to environmental remediation, and new medicines. BT holds much promise for the development of national and local economies, however, this requires a strategic approach involving actors within government, industry, and academia working in concert to maximize this potential. This first article reviews the current "state of play" in the field of BT within the Central Eastern European (CEE) countries. For the purposes of this article, CEE refers to the countries of Czech Republic, Hungary, Poland, and Slovakia (the so-called Visegrad - V4 countries). We examine the components that support the creation and development of a BT sector in CEE and also highlight the barriers to these objectives. Clearly setting priorities for the countries' policy agenda, as well as the alignment of Smart Specialization Strategy will help to focus efforts. Recent investments in R&D infrastructure within CEE have been substantial, but conditions will need to be optimized to harness these largely European investments for effective use towards SME high-tech development.


Assuntos
Biotecnologia , Desenvolvimento Industrial , Indústria Manufatureira , Projetos de Pesquisa , Biotecnologia/economia , Biotecnologia/educação , Biotecnologia/legislação & jurisprudência , Biotecnologia/organização & administração , República Tcheca , Meio Ambiente , Europa (Continente) , Governo , Humanos , Hungria , Indústria Manufatureira/organização & administração , Polônia , Eslováquia
13.
Biodegradation ; 29(4): 359-407, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29948519

RESUMO

Environmental pollution with petroleum toxic products has afflicted various ecosystems, causing devastating damage to natural habitats with serious economic implications. Some crude oil components may serve as growth substrates for microorganisms. A number of bacterial strains reveal metabolic capacities to biotransform various organic compounds. Some of the hydrocarbon degraders are highly biochemically specialized, while the others display a versatile metabolism and can utilize both saturated aliphatic and aromatic hydrocarbons. The extended catabolic profiles of the latter group have been subjected to systematic and complex studies relatively rarely thus far. Growing evidence shows that numerous bacteria produce broad biochemical activities towards different hydrocarbon types and such an enhanced metabolic potential can be found in many more species than the already well-known oil-degraders. These strains may play an important role in the removal of heterogeneous contamination. They are thus considered to be a promising solution in bioremediation applications. The main purpose of this article is to provide an overview of the current knowledge on aerobic bacteria involved in the mineralization or transformation of both n-alkanes and aromatic hydrocarbons. Variant scientific approaches enabling to evaluate these features on biochemical as well as genetic levels are presented. The distribution of multidegradative capabilities between bacterial taxa is systematically shown and the possibility of simultaneous transformation of complex hydrocarbon mixtures is discussed. Bioinformatic analysis of the currently available genetic data is employed to enable generation of phylogenetic relationships between environmental strain isolates belonging to the phyla Actinobacteria, Proteobacteria, and Firmicutes. The study proves that the co-occurrence of genes responsible for concomitant metabolic bioconversion reactions of structurally-diverse hydrocarbons is not unique among various systematic groups.


Assuntos
Alcanos/metabolismo , Bactérias Aeróbias/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Alcanos/química , Biodegradação Ambiental , Biotransformação , Hidrocarbonetos Aromáticos/química , Filogenia
14.
Environ Sci Pollut Res Int ; 25(9): 8928-8942, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29332274

RESUMO

Chromate-induced physiological stress in a water-submerged macrophyte Callitriche cophocarpa Sendtn. (water starwort) was tested at the proteomic level. The oxidative stress status of the plant treated with 1 mM Cr(VI) for 3 days revealed stimulation of peroxidases whereas catalase and superoxide dismutase activities were similar to the control levels. Employing two-dimensional electrophoresis, comparative proteomics enabled to detect five differentiating proteins subjected to identification with mass spectrometry followed by an NCBI database search. Cr(VI) incubation led to induction of light harvesting chlorophyll a/b binding protein with a concomitant decrease of accumulation of ribulose bisphosphate carboxylase (RuBisCO). The main finding was, however, the identification of an NAD(P)H-dependent dehydrogenase FQR1, detectable only in Cr(VI)-treated plants. The FQR1 flavoenzyme is known to be responsive to oxidative stress and to act as a detoxification protein by protecting the cells against oxidative damage. It exhibits the in vitro quinone reductase activity and is capable of catalyzing two-electron transfer from NAD(P)H to several substrates, presumably including Cr(VI). The enhanced accumulation of FQR1 was chromate-specific since other stressful conditions, such as salt, temperature, and oxidative stresses, all failed to induce the protein. Zymographic analysis of chromate-treated Callitriche shoots showed a novel enzymatic protein band whose activity was attributed to the newly identified enzyme. We suggest that Cr(VI) phytoremediation with C. cophocarpa can be promoted by chromate reductase activity produced by the induced quinone oxidoreductase which might take part in Cr(VI) â†’ Cr(III) bioreduction process and thus enable the plant to cope with the chromate-generated oxidative stress.


Assuntos
Catalase/metabolismo , Clorofila A/química , Cromatos/química , NAD(P)H Desidrogenase (Quinona)/metabolismo , NAD/metabolismo , Proteoma/metabolismo , Biodegradação Ambiental , Catalase/química , Transporte de Elétrons , NAD/química , NAD(P)H Desidrogenase (Quinona)/química , Oxirredução , Plantas , Proteoma/química , Proteômica , Água
15.
Biogerontology ; 17(4): 737-47, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27040824

RESUMO

Carnosine is an endogenous dipeptide composed of ß-alanine and L-histidine, which occurs in vertebrates, including humans. It has a number of favorable properties including buffering, chelating, antioxidant, anti-glycation and anti-aging activities. In our study we used the Saccharomyces cerevisiae yeast as a model organism to examine the impact of L-carnosine on the cell lifespan. We demonstrated that L-carnosine slowed down the growth and decreased the metabolic activity of cells as well as prolonged their generation time. On the other hand, it allowed for enhancement of the yeast reproductive potential and extended its reproductive lifespan. These changes may be a result of the reduced mitochondrial membrane potential and decreased ATP content in the yeast cells. However, due to reduction of the post-reproductive lifespan, L-carnosine did not have an influence on the total lifespan of yeast. In conclusion, L-carnosine does not extend the total lifespan of S. cerevisiae but rather it increases the yeast's reproductive capacity by increasing the number of daughter cells produced.


Assuntos
Carnosina/administração & dosagem , Proliferação de Células/fisiologia , Senescência Celular/fisiologia , Meios de Cultura/metabolismo , Glucose/metabolismo , Saccharomyces cerevisiae/fisiologia , Trifosfato de Adenosina/metabolismo , Reatores Biológicos/microbiologia , Carbono/metabolismo , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Saccharomyces cerevisiae/citologia
16.
Appl Microbiol Biotechnol ; 97(12): 5555-64, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23467829

RESUMO

The methylotrophic yeasts Hansenula polymorpha and Trichosporon sp. revealed enhanced biodegradation capability of exogenously applied formaldehyde (Fd) upon biostimulation achieved by the presence of methanol, as compared to glucose. Upon growth on either of the above substrates, the strains proved to produce the activity of glutathione-dependent formaldehyde dehydrogenase-the enzyme known to control the biooxidative step of Fd detoxification. However, in the absence of methanol, the yeasts' tolerance to Fd was decreased, and the elevated sensitivity was especially pronounced for Trichosporon sp. Both strains responded to the methanol and/or Fd treatment by increasing their unsaturation index (UI) at xenobiotic levels below minimal inhibitory concentrations. This indicated that the UI changes effected from the de novo synthesis of (poly) unsaturated fatty acids carried out by viable cells. It is concluded that the yeast cell response to Fd intoxication involves stress reaction at the level of membranes. Fluidization of the lipid bilayer as promoted by methanol is suggested as a significant adaptive mechanism increasing the overall fitness enabling to cope with the formaldehyde xenobiotic via biodegradative pathway of C1-compound metabolism.


Assuntos
Formaldeído/metabolismo , Metanol/metabolismo , Pichia/efeitos dos fármacos , Pichia/metabolismo , Trichosporon/efeitos dos fármacos , Trichosporon/metabolismo , Biotransformação , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Poluentes Ambientais/metabolismo , Poluentes Ambientais/toxicidade , Ácidos Graxos Insaturados/metabolismo , Formaldeído/toxicidade , Glucose/metabolismo , Fluidez de Membrana/efeitos dos fármacos , Pichia/fisiologia , Estresse Fisiológico , Trichosporon/fisiologia
17.
Acta Biochim Pol ; 53(3): 463-73, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17019438

RESUMO

A yeast isolate revealing unique enzymatic activities and substrate-dependent polymorphism was obtained from autochthonous microflora of soil heavily polluted with oily slurries. By means of standard yeast identification procedures the strain was identified as Trichosporon cutaneum. Further molecular PCR product analyses of ribosomal DNA confirmed the identity of the isolate with the genus Trichosporon. As it grew on methanol as a sole carbon source, the strain appeared to be methylotrophic. Furthermore, it was also able to utilize formaldehyde. A multi-substrate growth potential was shown with several other carbon sources: glucose, glycerol, ethanol as well as petroleum derivatives and phenol. Optimum growth temperature was determined at 25 degrees C, and strong inhibition of growth at 37 degrees C together with the original soil habitat indicated lack of pathogenicity in warm-blooded animals and humans. The unusually high tolerance to xenobiotics such as diesel oil (>30 g/l), methanol (50 g/l), phenol (2 g/l) and formaldehyde (7.5 g/l) proved that the isolate was an extremophilic organism. With high-density cultures, formaldehyde was totally removed at initial concentrations up to 7.5 g/l within 24 h, which is the highest biodegradation capability ever reported. Partial biodegradation of methanol (13 g/l) and diesel fuel (20 g/l) was also observed. Enzymatic studies revealed atypical methylotrophic pathway reactions, lacking alcohol oxidase, as compared with the conventional methylotroph Hansenula polymorpha. However, the activities of glutathione-dependent formaldehyde dehydrogenase, formaldehyde reductase, formate dehydrogenase and unspecific aldehyde dehydrogenase(s) were present. An additional glutathione-dependent aldehyde dehydrogenase activity was also detected. Metabolic and biochemical characteristics of the isolated yeast open up new possibilities for environmental biotechnology. Some potential applications in soil bioremediation and wastewater decontamination are discussed.


Assuntos
Microbiologia do Solo , Trichosporon/isolamento & purificação , Trichosporon/fisiologia , Eliminação de Resíduos Líquidos , Biodegradação Ambiental , Biotecnologia/métodos , Formaldeído/metabolismo , Gasolina/microbiologia , Metanol/metabolismo , Petróleo/metabolismo , Fenol/metabolismo , Polônia , Poluentes do Solo/química , Temperatura
18.
Med Dosw Mikrobiol ; 56(1): 79-92, 2004.
Artigo em Polonês | MEDLINE | ID: mdl-15524399

RESUMO

Propionibacterium acnes is a component of physiological flora of human skin. It colonizes the outlets of sebaceous glands and participates in the pathogenesis of inflammatory acne. Acne vulgaris is a common skin disease. It is found in more or less exacerbated form in approximately 85% of adolescent population. The main purpose of the research was to confirm the hypothesis of Propionibacterium bacteria participation in the aetiopathogenesis of acne vulgaris. The researches have proved the presence of Propionibacterium acnes on the surface of the skin both of people with acne-related changes and these with whom such changes were not found. Statistically significant differences were found in the number of P. acnes bacteria per 1 square centimeter of healthy and disease-affected skin as well as in the diversity of biochemical types. The highest number of P. acnes bacteria have been found in fresh changes with visible symptoms of inflammation. In order to confirm the hypothesis of the participation of Propionibacterium bacteria in the aetiopathogenesis of acne, a detailed phenotypical analysis of isolated P. acnes strains have been conducted. Type, biotype, resistance pattern, proteolytic and lipolytic properties have been determined.


Assuntos
Acne Vulgar/microbiologia , Propionibacterium acnes , Adolescente , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Propionibacterium acnes/classificação , Propionibacterium acnes/isolamento & purificação , Propionibacterium acnes/metabolismo
19.
Microbiol Res ; 159(1): 11-7, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15160602

RESUMO

Yeast tolerance to Cr (III) and Cr (VI) as well as chromium accumulation potential were shown to depend on treatment time, metal concentration, biomass density and the phase of growth. Kinetic studies as exemplified by Pichia guilliermondii ATCC 201911 revealed a biphasic mode of Cr (III) uptake: a rapid sorption phase was followed by a slow process of accumulation, in which the contribution of the cell-bound Cr fraction increased, while the total cellular Cr level remained constant. Cr (VI) uptake was characterized by a time-dependent increase of total Cr and by a constant fractional contribution of the cell-adsorbed chromium, which suggests that the amount of cell-accumulated Cr also tended to increase over time. The resistance to Cr and metal accumulation levels were substantially elevated for a given strain when cultures were treated at high initial biomass densities (1 mg dry weight/ml) of exponentially proliferating cells. Maximum accumulation capabilities ranged between 4.0 and 13 mg Cr (III)/g dry weight and 2-6.7 mg Cr (VI)/g dry weight. The total cell-accumulated Cr contained 29.3% and 52.3% of organically bound chromium for the treatment of P. guilliermondii with Cr (III) and Cr (VI), respectively. Selected yeast strains, under specified physiological conditions, can be applied for bioremediation of environmental Cr contamination, and might be useful too for attempts to obtain chromium-enriched biomass containing biostabilized and nontoxic Cr forms for nutritional applications.


Assuntos
Cromo/metabolismo , Leveduras/crescimento & desenvolvimento , Leveduras/metabolismo , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Biodegradação Ambiental , Biomassa , Cromo/farmacologia , Farmacorresistência Fúngica , Poluição Ambiental , Pichia/efeitos dos fármacos , Pichia/crescimento & desenvolvimento , Pichia/metabolismo , Fatores de Tempo , Leveduras/efeitos dos fármacos
20.
Rocz Panstw Zakl Hig ; 54(1): 25-32, 2003.
Artigo em Polonês | MEDLINE | ID: mdl-12870294

RESUMO

Cruciferous vegetables play an important role because of their sulphorafane contents which are enzymatically released from the glucosinolate known as glucoraphanin. The physiological properties of the compound exhibit antitumorigenic activity. The work describes the chloroform extraction method of sulforaphane from the broccoli and the preparation of sulforaphane sugar extract. The extract was then used to feed bees in a specially constructed beehive so that sulforaphane could be transformed into herbal honey. The concentration of sulforaphane was determined in the obtained herbal honey as high as 1.2 microM.


Assuntos
Terapias Complementares/métodos , Doxorrubicina/análogos & derivados , Doxorrubicina/análise , Mel/análise , Neoplasias/prevenção & controle , Plantas , Tiocianatos/análise , Cromatografia Líquida de Alta Pressão , Humanos , Isotiocianatos , Sulfóxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...