Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Oral Biosci ; 65(4): 287-292, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37659475

RESUMO

OBJECTIVES: Candidalysin (CL), a hydrophobic peptide toxin secreted by Candida albicans, is a key virulence factor that contributes to cytolysis, tissue damage, and immune activation. CL is thought to exert some of its biological activities, including IL-1ß production, through the activation of the NLRP3-inflammasome pathway. To date, the mechanism by which CL affects human NLRP3 is not fully understood. We investigated specific activities of synthetic CL peptides using human-derived NLRP3-deficient cells. METHODS: Two distinct synthetic CL peptide solutions were prepared: CLd, with CL completely solubilized as nanoparticles in dimethyl sulfoxide, and CLw, with CL partly solubilized in water, and including insoluble microparticles. THP-1 human monocytic cells and NLRP3-deficient THP-1 cells were differentiated into macrophages and stimulated with these peptide solutions. Cell membrane damage, lactate dehydrogenase release, IL-1ß production, and caspase-1 activation in stimulated cells were subsequently evaluated. RESULTS: Both CLd and CLw exhibited cytotoxic activities independent of NLRP3. Importantly, CLd induced IL-1ß production and caspase-1 activation in an NLRP3-independent manner, whereas these activities in CLw-stimulated cells were entirely NLRP3-dependent, suggesting that the NLRP3-dependent response might be triggered by insoluble microparticles. CONCLUSIONS: Our results demonstrate that inherent CL activities can cause cell damage and IL-1ß production in an NLRP3-independent manner. Our research advances the elucidation of the role of NLRP3 in CL biological activity, underscoring the necessity for further exploration of the precise mechanisms underlying the NLRP3-independent effects of CL and providing novel insights into the complexity of host-pathogen interactions.


Assuntos
Antineoplásicos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Inflamassomos/farmacologia , Macrófagos/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Caspases/metabolismo , Caspases/farmacologia
2.
PLoS One ; 17(8): e0273663, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36040970

RESUMO

Candidalysin, a peptide toxin produced specifically from hyphae of Candida albicans, plays a crucial role in C. albicans pathogenesis in the oral cavity and vagina. Synthetic peptides have been widely used in previous studies to investigate the bioactivity of candidalysin. Although the solubility of the peptide, which is expected to have a hydrophobic property, has not been well characterized, candidalysin solutions are usually prepared in water. In this study, we prepared the synthetic peptide candidalysin in water (CLw) or in dimethyl sulfoxide (CLd) and compared their cytotoxicity and interleukin (IL)-1ß-producing activity to determine whether the activity of the peptide would be affected. In addition, we evaluated whether the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome pathway or other pathways were involved in their activities. Unexpectedly, we found that CLw was not completely solubilized and contained abundant insoluble microparticles. CLw was active at comparably high concentrations (≥ 10 µM). In contrast, CLd is completely solubilized and sufficiently active at low concentrations, that is, 1 µM or less. CLw showed weak cytotoxicity and NLRP3-dependent and cathepsin B-dependent IL-1ß-producing activity, whereas CLd showed strong cytotoxicity and cathepsin B-dependent IL-1ß-producing activity. Fractionation of CLw revealed that NLRP3-dependent activity was caused by insoluble microparticles. Furthermore, nanoparticle tracking of CLd revealed that the peptide was present as nanoparticles with a size of 96 nm. CLw contained a small amount of such nanoparticles. Thus, the bioactivities of the synthetic peptide candidalysin, especially the IL-1ß-producing activity, are affected by the solubility of the peptide depending on the solvent employed. The NLRP3-dependent activity of the synthetic peptide is caused by insoluble microparticles and may not be the intrinsic activity of candidalysin.


Assuntos
Catepsina B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Candida albicans/metabolismo , Catepsina B/metabolismo , Proteínas Fúngicas , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Solubilidade , Água/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-35355686

RESUMO

Almost cases of Posterolateral Corner (PLC) injuries are combined injuries involving the anterior or posterior cruciate ligament. Although numerous techniques of PLC reconstruction have been reported, it is unknown whether these techniques reconstruct PLC sufficiently. The anatomy of PLC is complex of tendon-muscle and ligament. The major structures are the fibular collateral ligament (FCL) and the Popliteus Tendon Complex. The latter comprises the popliteus tendon-muscle and the popliteo-fibular ligament (PFL). The FCL and PFL are static stabilizers, whereas the popliteus tendon-muscle is a dynamic stabilizer. The most of current PLC reconstructions statically restore all component parts, therefore not true "anatomically". We describe an operative technique to reconstruct PLC anatomically. Our technique preserves dynamic stability of the popliteus tendon-muscle and reconstructs the PFL and FCL selectively.Semitendinosus tendon is harvested, and almost used for the anterior or posterior cruciate ligament reconstruction. Gracilis tendon or contralateral semitendinosus tendon is used for PLC. Femoral bone tunnel for FCL is prepared at anatomical insertion. Fibular bone tunnel is prepared to connect PFL insertion with FCL insertion. One end of the graft is sutured to the popliteus tendon. The other end is passed though the fibular tunnel, and fixed at the femoral tunnel. The interference screws are used at each tunnel. One half of the graft composes PFL part, the other half composes FCL part. Advantages of this technique are preservation of dynamic popliteus tendon-muscle function, and simplifying preparation.

4.
J Oral Biosci ; 63(2): 192-198, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33933610

RESUMO

OBJECTIVES: Sjögren's syndrome (SS) is a chronic autoimmune disease characterized by inflammatory lesions in the salivary and lacrimal glands, which are caused by distinct lymphocytic infiltrates. Female non-obese diabetic (NOD) mice spontaneously develop inflammatory lesions of the salivary glands with SS-like pathological features. Previous studies have shown that MyD88, a crucial adaptor protein that activates innate immune signaling, affects lymphocytic infiltration, but its detailed role remains unclear. In this study, we investigated the role of MyD88 through gene expression profiling in the early phase of pathogenesis in the salivary glands of female NOD mice. METHODS: Submandibular glands collected from 10-week-old female wild-type and Myd88-deficient NOD mice were used for RNA preparation, followed by microarray analysis. The microarray dataset was analyzed to identify Myd88-dependent differentially expressed genes (DEGs). Data generated were used for GO enrichment, KEGG pathway, STRING database, and INTERFEROME database analyses. RESULTS: Myd88 deficiency was found to affect 230 DEGs, including SS-associated genes, such as Cxcl9 and Bpifa2. Most of the DEGs were identified as being involved in immunological processes. KEGG pathway analysis indicated that the DEGs were putatively involved in autoimmune diseases, such as systemic lupus erythematosus and rheumatoid arthritis. Furthermore, the DEGs included 149 interferon (IFN)-regulated genes. CONCLUSIONS: MyD88 is involved in the expression of specific genes associated with IFN-associated immunopathological processes in the salivary glands of NOD mice. Our findings are important for understanding the role of MyD88-dependent innate immune signaling in SS manifestation.


Assuntos
Diabetes Mellitus , Glândulas Salivares , Animais , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos NOD , Análise em Microsséries , Fator 88 de Diferenciação Mieloide/genética , Doenças da Imunodeficiência Primária , Glândulas Salivares/metabolismo
5.
Food Sci Nutr ; 9(2): 963-972, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33598179

RESUMO

Toll-like receptors (TLRs) are important innate immune receptors that sometimes cause excessive inflammatory responses and a perpetuated inflammatory loop that can be involved in inflammatory and autoimmune diseases. TLR2 recognizes bacterial lipoproteins in association with TLR1 or TLR6, and triggers inflammatory responses through activation of the transcription factor NF-κB. Naringenin, a type of citrus flavonoid, has been shown to possess anti-inflammatory properties, but its detailed action against TLR2 remains to be fully elucidated. The present study was designed to determine whether naringenin affects the inflammatory responses triggered by TLR2. Naringenin inhibited proinflammatory cytokine production and attenuated NF-κB activation in cells stimulated with a synthetic triacylated-type lipopeptide known as a TLR2/TLR1 ligand, as well as a synthetic diacylated-type lipopeptide known as a TLR2/TLR6 ligand. Moreover, a similar inhibitory effect was observed in cells stimulated with a crude lipophilic fraction extracted from Staphylococcus aureus cell walls and in cells stimulated with S. aureus cells. Furthermore, we showed that such an effect is caused by inhibition of TLR2 clustering in lipid rafts on the cell membrane. These results suggest that naringenin suppresses the inflammatory responses induced by TLR2 signal transduction. Our findings indicate a novel anti-inflammatory property of naringenin, mediated through the regulation of cell surface TLR2 functioning.

6.
J Med Microbiol ; 70(3)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33439115

RESUMO

Introduction. Food allergies (FAs) occur due to intestinal immune dysfunction elicited by dysbiotic conditions. It was previously determined by us that Citrobacter species propagate in the faeces of mice with FAs and worsen allergic symptoms by inducing the allergenic cytokine IL-33. Dendritic cells can play important roles in regulation of FA responses.Hypothesis. Citrobacter species propagating in intestines of mice worsen allergic symptoms by stimulating dendritic cells to induce IL-33 expression.Aim. The aim of the present study was to analyse whether C. koseri stimulates dendritic cells to induce IL-33 expression.Methodology. IL-33 expression was evaluated in a DC2.4 mouse dendritic cell line stimulated by live or heat-inactivated C. koseri JCM1658, ATP, LPS extracted from C. koseri JCM1658 or other enterobacteria by real-time PCR. The ATP concentration and number of live bacteria in the culture supernatant were measured simultaneously.Results. Live C. koseri JCM1658 induced higher levels of IL-33 expression than other enterobacteria tested, but such a response was not elicited by heat-inactivated C. koseri JCM1658. LPS extracted from C. koseri JCM1658 did not induce IL-33 expression and suppressed live C. koseri JCM1658-induced IL-33 expression via the activation of Toll-like receptor 4 signalling. Furthermore, ATP produced by C. koseri JCM1658 stimulated dendritic cells to induce IL-33 expression by stimulating the P2X7 receptor, and LPS attenuated extracellular ATP-induced IL-33 expression. C. koseri JCM1658 was observed to proliferate more vigorously and produce more ATP than other enterobacteria.Conclusion. C. koseri acts as an allergenic bacterium through ATP production, stimulating dendritic cells to induce IL-33 expression, while LPS released from inactivated C. koseri JCM1658 attenuates this allergenicity.


Assuntos
Trifosfato de Adenosina/metabolismo , Citrobacter koseri/patogenicidade , Infecções por Enterobacteriaceae , Hipersensibilidade Alimentar , Interleucina-33/imunologia , Animais , Linhagem Celular , Células Dendríticas/microbiologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/microbiologia , Hipersensibilidade Alimentar/imunologia , Hipersensibilidade Alimentar/microbiologia , Camundongos , Transdução de Sinais
7.
PLoS One ; 15(4): e0231101, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32302339

RESUMO

Mast cells and basophils are central players in allergic reactions triggered by immunoglobulin E (IgE). They have intracellular granules containing allergic mediators (e.g., histamine, serotonin, inflammatory cytokines, proteases and ß-hexosaminidase), and stimulation by IgE-allergen complex leads to the release of such allergic mediators from the granules, that is, degranulation. Mast cells are residents of mucosal surfaces, including those of nasal and oral cavities, and play an important role in the innate defense system. Members of the mitis group streptococci such as Streptococcus oralis, are primary colonizers of the human oral cavity. They produce hydrogen peroxide (H2O2) as a by-product of sugar metabolism. In this study, we investigated the effects of streptococcal infection on RBL-2H3 mast cell/basophil cell line. Infection by oral streptococci did not induce degranulation of the cells. Stimulation of the RBL-2H3 cells with anti-dinitrophenol (DNP) IgE and DNP-conjugated human serum albumin triggers degranulation with the release of ß-hexosaminidase. We found that S. oralis and other mitis group streptococci inhibited the IgE-triggered degranulation of RBL-2H3 cells. Since mitis group streptococci produce H2O2, we examined the effect of S. oralis mutant strain deficient in producing H2O2, and found that they lost the ability to suppress the degranulation. Moreover, H2O2 alone inhibited the IgE-induced degranulation. Subsequent analysis suggested that the inhibition of degranulation was related to the cytotoxicity of streptococcal H2O2. Activated RBL-2H3 cells produce interleukin-4 (IL-4); however, IL-4 production was not induced by streptococcal H2O2. Furthermore, an in vivo study using the murine pollen-induced allergic rhinitis model suggested that the streptococcal H2O2 reduces nasal allergic reaction. These findings reveal that H2O2 produced by oral mitis group streptococci inhibits IgE-stimulated degranulation by inducing cell death. Consequently, streptococcal H2O2 can be considered to modulate the allergic reaction in mucosal surfaces.


Assuntos
Alérgenos/metabolismo , Hipersensibilidade/imunologia , Imunoglobulina E/imunologia , Infecções Estreptocócicas/tratamento farmacológico , Alérgenos/imunologia , Animais , Basófilos/imunologia , Basófilos/microbiologia , Basófilos/patologia , Degranulação Celular/imunologia , Sobrevivência Celular/imunologia , Dinitrofenóis/farmacologia , Humanos , Peróxido de Hidrogênio/metabolismo , Hipersensibilidade/tratamento farmacológico , Hipersensibilidade/patologia , Imunoglobulina E/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Mastócitos/imunologia , Mastócitos/microbiologia , Mastócitos/patologia , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Albumina Sérica Humana/imunologia , Albumina Sérica Humana/metabolismo , Infecções Estreptocócicas/imunologia , Streptococcus oralis/imunologia , Streptococcus oralis/patogenicidade , Açúcares/metabolismo
8.
Infect Immun ; 88(1)2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31611274

RESUMO

Food allergy is a life-threatening response to specific foods, and microbiota imbalance (dysbiosis) in gut is considered a cause of this disease. Meanwhile, the host immune response also plays an important role in the disease. Notably, interleukin 33 (IL-33) released from damaged or necrotic intestinal epithelial cells facilitates IL-2-producing CD4 helper T (Th2) responses. However, causal relationships between the gut and oral dysbiosis and food allergy remain unknown. In this study, we analyzed effects of gut and oral dysbiosis on development of food allergy. A murine model of food allergy was established via ovalbumin (OVA) injection in BALB/c mice. Viable fecal bacteria were identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). il33 expression in colon-26 mouse colon cells stimulated by isolated fecal bacteria was quantified by real-time PCR. Intestinal T cells from the mice were analyzed by flow cytometry. Salivary IgA levels were quantified by enzyme-linked immunosorbent assay (ELISA), and IgA-bound oral bacteria were detected by flow cytometry. Among fecal bacteria, the abundance of Citrobacter sp. increased in the feces of allergic mice and induced il33 expression in colon-26 cells. Orally administered Citrobacter koseri JCM1658 exacerbated systemic allergic symptoms and reduced intestinal Th17 cells. Salivary IgA and IgA-bound oral bacteria increased in the allergic mice. Based on the results described above, food allergy induced both gut and oral dysbiosis. Citrobacter sp. aggravated allergy symptoms by inducing IL-33 release from intestinal epithelial cells.


Assuntos
Disbiose , Hipersensibilidade Alimentar/complicações , Trato Gastrointestinal/microbiologia , Imunoglobulina A/metabolismo , Fatores Imunológicos/metabolismo , Microbiota/efeitos dos fármacos , Boca/microbiologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Camundongos Endogâmicos BALB C
9.
FEMS Microbiol Lett ; 365(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29240953

RESUMO

Oral streptococci, including cariogenic bacterium Streptococcus mutans, comprise a large percentage of human supragingival plaque, which contacts both tooth surfaces and gingiva. Eukaryotic cells are able to take up macromolecules and particles, including bacteria, by endocytosis. Increasing evidence indicates endocytosis may be used as an entry process by bacteria. We hypothesized that some endocytosed bacteria might survive and obtain nutrients, such as amino acids, until they are killed. To verify this hypothesis, we focused on bacterial utilization of branched-chain amino acids (BCAAs; isoleucine, leucine and valine) in host cells. A branched-chain aminotransferase, IlvE (EC 2.6.1.42), has been suggested to play an important role in internal synthesis of BCAAs in S. mutans UA159. Therefore, we constructed an ilvE-deficient S. mutans 109c strain and confirmed that it had similar growth behavior as reported previously. 14C radioactive leucine uptake assays showed that ilvE-deficient S. mutans took up more leucine both inside and outside of host cells. We further clarified that a relative decrease of BCAAs in host cells caused enhanced endocytic and autophagic activity. In conclusion, S. mutans is endocytosed by host cells and may survive and obtain nutrients, such as BCAAs, inside the cells, which might affect cellular functions of host cells.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/patologia , Streptococcus mutans/metabolismo , Autofagossomos/metabolismo , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Endocitose , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Humanos , Leucina/metabolismo , Mutação , Streptococcus mutans/genética , Streptococcus mutans/crescimento & desenvolvimento , Transaminases/genética
10.
Biochem Biophys Res Commun ; 495(1): 223-229, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29113797

RESUMO

We previously reported that inhibition of dipeptidyl peptidase (DPP)-4, the catalytic site of CD26, prevents atherosclerosis in animal models through suppression of inflammation; however, the underlying molecular mechanisms have not been fully elucidated. Caveolin-1 (Cav-1), a major structural protein of caveolae located on the surface of the cellular membrane, has been reported to modulate inflammatory responses by binding to CD26 in T cells. In this study, we investigated the role of Cav-1 in the suppression of inflammation mediated by the DPP-4 inhibitor, teneligliptin, using mouse and human macrophages. Mouse peritoneal macrophages were isolated from Cav-1+/+ and Cav-1-/- mice after stimulation with 3% thioglycolate. Inflammation was induced by the toll-like receptor (TLR)4 agonist, lipopolysaccharide (LPS), isolated from Escherichia coli. The expression of pro-inflammatory cytokines was determined using reverse transcription-polymerase chain reaction. Co-expression of Cav-1 and CD26 was detected using immunohistochemistry in both mouse and human macrophages. Teneligliptin treatment (10 nmol/L) suppressed the LPS-induced expression of interleukin (IL)-6 (70%) and tumor necrosis factor-α (37%) in peritoneal macrophages isolated from Cav-1+/+ mice. However, teneligliptin did not have any effect on the macrophages from Cav-1-/- mice. In human monocyte/macrophage U937 cells, teneligliptin treatment suppressed LPS-induced expression of pro-inflammatory cytokines in a dose-dependent manner (1-10 nmol/L). These anti-inflammatory effects of teneligliptin were mimicked by gene knockdown of Cav-1 or CD26 using small interfering RNA transfection. Furthermore, neutralization of these molecules using an antibody against CD26 or Cav-1 also showed similar suppression. Teneligliptin treatment specifically inhibited TLR4 and TLR5 agonist-mediated inflammatory responses, and suppressed LPS-induced phosphorylation of IL-1 receptor-associated kinase 4, a downstream molecule of TLR4. Next, we determined whether teneligliptin could directly inhibit the physical interaction between Cav-1 and CD26 using the Biacore system. Binding of CD26 to Cav-1 protein was detected. Unexpectedly, teneligliptin also bound to Cav-1, but did not interfere with CD26-Cav-1 binding, suggesting that teneligliptin competes with CD26 for binding to Cav-1. In conclusion, we demonstrated that Cav-1 is a target molecule for DPP-4 inhibitors in the suppression of TLR4-mediated inflammation in mouse and human macrophages.


Assuntos
Anti-Inflamatórios/farmacologia , Caveolina 1/imunologia , Dipeptidil Peptidase 4/imunologia , Inibidores da Dipeptidil Peptidase IV/farmacologia , Macrófagos/efeitos dos fármacos , Pirazóis/farmacologia , Tiazolidinas/farmacologia , Animais , Feminino , Humanos , Mediadores da Inflamação/imunologia , Macrófagos/imunologia , Camundongos , Receptor 4 Toll-Like/imunologia , Receptor 5 Toll-Like/imunologia
11.
Infect Immun ; 86(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29263111

RESUMO

Small noncoding RNAs (sRNAs) have been identified as important regulators of gene expression in various cellular processes. cia-dependent small RNAs (csRNAs), a group of sRNAs that are controlled by the two-component regulatory system CiaRH, are widely conserved in streptococci, but their targets have been identified only in Streptococcus pneumoniaeStreptococcus sanguinis, a pioneer colonizer of teeth and one of the most predominant bacteria in the early oral biofilm, has been shown to have six csRNAs. Using computational target prediction and the luciferase reporter assay, we identified pilT, a constituent of the type IV pilus operon, as a negative regulatory target for one of the csRNAs, namely, csRNA1-1, in S. sanguinis RNA-RNA electrophoretic mobility shift assay using a nucleotide exchange mutant of csRNA1-1 revealed that csRNA1-1 binds directly to pilT mRNA. In addition, csRNA1-1 and csRNA1-2, a putative gene duplication product of csRNA1-1 that is tandemly located in the S. sanguinis genome, negatively regulated S. sanguinis biofilm formation. These results suggest the involvement of csRNAs in the colonization step of S. sanguinis.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , Pequeno RNA não Traduzido/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus sanguis/genética , Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Regulação para Baixo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/genética , Streptococcus sanguis/fisiologia
12.
Biochem Biophys Res Commun ; 485(2): 414-420, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28209510

RESUMO

Melatonin produced by the pineal gland suppresses inflammatory responses in innate immune cells. However, the mechanism of how melatonin affects inflammatory gene regulation remains unclear. Here we performed comprehensive microarray analysis combined with transcription factor binding site (TFBS) analysis using LPS-induced mouse macrophages to investigate the effect of melatonin treatment. The results showed that melatonin preferentially downregulated interferon regulatory factors (IRFs) and signal transducers and activators of transcription (STATs) related signaling. The results also showed that melatonin strongly suppressed virus infection related gene expression. Furthermore, TFBS analysis implicated that melatonin downregulated the binding activity of hypoxia inducible factors (HIFs), following destabilizing actin cytoskeleton which are indispensable for induction of the TRIF-dependent signaling pathway. Indeed, it was demonstrated that melatonin treatment caused impaired phagocytosis in macrophages. Thus, melatonin regulates inflammatory responses by inhibiting specific subsets of transcription factors (TFs) by disrupting actin dynamics in the macrophage.


Assuntos
Actinas/metabolismo , Perfilação da Expressão Gênica/métodos , Macrófagos/efeitos dos fármacos , Melatonina/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Animais , Antioxidantes/farmacologia , Análise por Conglomerados , Citocinas/genética , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Ontologia Genética , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Microscopia de Fluorescência , Polimerização/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
13.
Biochem Biophys Res Commun ; 485(2): 461-467, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28202416

RESUMO

Oral streptococci including mitis group streptococci are commensal residents and are also the first to colonize the oral cavity. However, various species of these oral streptococci have the potential to invade the host and occasionally lead to severe infectious disease such as cardiovascular diseases. Oral streptococci have close interactions with the host immune system including macrophages at the oral mucosal surface. One notable common trait of oral streptococcus including Streptococcus oralis (S. oralis) is the production of hydrogen peroxide (H2O2). Using a comprehensive microarray approach, we sought to understand the innate immune response profiling affected by H2O2 production from oral streptococci. We compared the gene expression patterns of macrophages infected with S. oralis wild type (WT) and streptococcal pyruvate oxidase knockout (SpxB-KO), a strain that does not produce H2O2. We found that H2O2 from S. oralis suppressed proinflammatory gene expression such as TNF-α, that is induced in response to infection, and activated the cellular stress genes such as Egr-1 in response to oxidative stress. A comparative gene ontology analysis of S. oralis WT and SpxB-KO strains revealed that during infection, down regulated genes were closely related to the processes involved in the host defense reaction and up regulated genes were related with the cellular stress responses. Using qPCR analysis, we also confirmed the same pattern of expression changes such as TNF-α, IL-6 and Egr-1. Furthermore, supernatant from SpxB-KO could not suppress the expression of TNF-α in macrophages stimulated with LPS. These findings suggested that H2O2 production from S. oralis leads to the suppression of inflammatory responses and NF-κB signaling pathways in macrophages as well as the induction of the oxidative stress response. We concluded that streptococcal H2O2 production has the beneficial effects of modulating the innate immune response, thereby stabilizing streptococcal colonization at the mucosal surface and even in the bloodstream leading to cardiovascular disease after invasion, in addition to the commensal role to compete other bacterial species as initial colonizer at oral cavity.


Assuntos
Perfilação da Expressão Gênica/métodos , Peróxido de Hidrogênio/metabolismo , Macrófagos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Streptococcus oralis/metabolismo , Células 3T3 , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Western Blotting , Linhagem Celular , Análise por Conglomerados , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Ontologia Genética , Interações Hospedeiro-Patógeno , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Piruvato Oxidase/genética , Piruvato Oxidase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Streptococcus oralis/genética , Streptococcus oralis/fisiologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
14.
Plant Cell ; 28(6): 1406-21, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27252292

RESUMO

Phytochromes are red light (R) and far-red light (FR) receptors that play important roles in many aspects of plant growth and development. Phytochromes mainly function in the nucleus and regulate sets of genes by inhibiting negatively acting basic helix-loop-helix transcription factors named PHYTOCHROME INTERACTING FACTORs (PIFs) in Arabidopsis thaliana Although R/FR photoreversible responses and phytochrome genes are well documented in diverse lineages of plants, the extent to which phytochrome signaling is mediated by gene regulation beyond angiosperms remains largely unclear. Here, we show that the liverwort Marchantia polymorpha, an emerging model basal land plant, has only one phytochrome gene, Mp-PHY, and only one PIF gene, Mp-PIF These genes mediate typical low fluence responses, which are reversibly elicited by R and FR, and regulate gene expression. Mp-phy is light-stable and translocates into the nucleus upon irradiation with either R or FR, demonstrating that the single phytochrome Mp-phy exhibits combined biochemical and cell-biological characteristics of type I and type II phytochromes. Mp-phy photoreversibly regulates gemma germination and downstream gene expression by interacting with Mp-PIF and targeting it for degradation in an R-dependent manner. Our findings suggest that the molecular mechanisms for light-dependent transcriptional regulation mediated by PIF transcription factors were established early in land plant evolution.


Assuntos
Marchantia/metabolismo , Fitocromo/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Marchantia/efeitos da radiação , Proteínas de Plantas/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-26170876

RESUMO

Oral mucositis (OM) in cancer patients induced by chemotherapy or radiotherapy has a significant impact on quality of life, and causes considerable morbidity. Oral microorganisms are likely to intensify the inflammatory process and aggravate the formation of ulcers. Hangeshashinto (HST), a Japanese kampo medicine, has been reported to be effective when used as a gargle for the treatment of OM. To clarify the effects of HST on oral microorganisms, we assessed its antimicrobial activity against 27 microbial species, including 19 oral bacteria and one fungus. HST extract inhibited the growth of Gram-negative bacteria, including Fusobacterium nucleatum, Porphyromonas gingivalis, Porphyromonas endodontalis, Prevotella intermedia, Prevotella melaninogenica, Tannerella forsythia, Treponema denticola, and Porphyromonas asaccharolytica, though inhibitory effects were less pronounced for Gram-positive bacteria and the fungal strain. We then investigated the effects of antibacterial activities on 15 purified ingredients of HST and determined that baicalein, berberine, coptisine, [6]-shogaol, and homogentisic acid actively inhibited the growth of these bacteria. These findings showed that HST inhibits the growth of specific Gram-negative periodontopathogenic bacteria, which are significant pathogens in OM, without disturbing the normal oral flora. Our data suggest that HST may be a useful treatment for OM in patients undergoing anticancer treatment.

16.
Pathog Dis ; 71(1): 65-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24265267

RESUMO

Previous work suggested that Rothia dentocariosa is associated with periodontal inflammatory disease. However, little is known about the pathogenicity of this bacterium. To characterize host response to this bacterium, we measured (via ELISA) the amount of TNF-α in the culture supernatant following the stimulation of THP-1 cells (a human acute monocytic leukemia cell line) with R. dentocariosa cells (ATCC14189 and ATCC14190). Exposure to bacterial cells induced the production of TNF-α in a dose-dependent manner. The bacterial induction of TNF-α in THP-1 cells was mediated by the Toll-like receptor 2 (TLR2), as demonstrated by gene-specific knockdown via siRNA, which successfully suppressed TLR2 expression and significantly inhibited the production of TNF-α in the culture supernatant. To confirm the role of TLR2, we examined TLR2-dependent NF-κB activation by R. dentocariosa cells in a distinct cell line. Specifically, HEK293 cells were transiently cotransfected with the human TLR2 gene and an NF-κB-dependent luciferase-encoding reporter gene. The bacterial cells induced NF-κB activation in the transfected HEK293 cells in a dose-dependent manner. In contrast, bacterial cells failed to induce NF-κB activation in cells transfected with pEF6 control vector. Taken together, these results suggest that R. dentocariosa induces host TNF-α production by a TLR2-dependent mechanism.


Assuntos
Micrococcaceae/imunologia , Receptor 2 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Técnicas de Silenciamento de Genes , Humanos , Monócitos/imunologia , Monócitos/microbiologia , Receptor 2 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/imunologia
17.
Pathog Dis ; 68(3): 65-77, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23737265

RESUMO

Whole cells of wild-type strains of Streptococcus gordonii and Streptococcus mutans induced Toll-like receptor 2 (TLR2)-mediated nuclear factor-κB (NF-κB) activation, whereas those of lipoprotein (LP)-deficient strains did not. All strains upregulated the proliferation of TLR2(+/+) splenocytes more strongly than TLR2(-/-) splenocytes. However, significant differences were not observed between the cytokine-inducing activities of wild-type and LP-deficient strains toward TLR2(+/+) and TLR2(-/-) splenocytes. Muramyl dipeptide as well as whole cells not only induced nucleotide-binding oligomerization domain 2 (NOD2)-mediated activation of NF-κB but also enhanced the proliferation of TLR2(-/-) as well as TLR2(+/+) splenocytes. Wild-type strains of these streptococci were more resistant to clearance from blood and organs (liver and spleen) in TLR2(+/+) but not TLR2(-/-) mice and induced production of larger amounts of blood TNF-α than the LP-deficient strains. Wild-type strains of both species adhered to human vascular endothelial cells more strongly than did the LP-deficient strains. Thus, this study suggested that LP plays an important role in the recognition of these streptococci by the host in vivo as well as in vitro and that these streptococci possess some components recognized by NOD2 and/or TLR2 that are involved in the mitogenic activity toward splenocytes.


Assuntos
Citocinas/metabolismo , Lipoproteínas/imunologia , NF-kappa B/imunologia , Streptococcus gordonii/imunologia , Streptococcus mutans/imunologia , Receptor 2 Toll-Like/imunologia , Animais , Aderência Bacteriana , Sangue/microbiologia , Proliferação de Células , Células Cultivadas , Células Endoteliais/microbiologia , Feminino , Humanos , Leucócitos Mononucleares/imunologia , Lipoproteínas/deficiência , Fígado/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Boca/microbiologia , Baço/imunologia , Baço/microbiologia , Streptococcus gordonii/isolamento & purificação , Streptococcus gordonii/patogenicidade , Streptococcus mutans/isolamento & purificação , Streptococcus mutans/patogenicidade , Receptor 2 Toll-Like/deficiência
18.
Exp Ther Med ; 5(2): 384-388, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23403404

RESUMO

Previous studies have presented evidence which indicates that the regeneration of axons in the spinal cord occurs following spinal cord transection in young rats. However, in a transection-regeneration model, the completeness of the transection is often a matter of dispute. We established a method for shortening the rat spine and spinal cord to provide a spinal cord injury (SCI) model in which there was no doubt about whether the axonal transection was complete. In the future, this model may be applied to the chronic period of complete paralysis following SCI. Adult, female Wistar rats (220-250g) were used in the study. The spinal cord was exposed and a 4-mm-long segment of the spinal cord was removed at Th8. Subsequently, the Th7/8 and Th8/9 discs were cut between the stumps of the spinal cord to remove the Th8 vertebra. The stitches which had been passed through the 7th and 9th ribs bilaterally were tied gradually to bring together the stumps of the spinal cord. Almost all the rats survived until the end of the experiment. Uncoordinated movements of the hind limbs in locomotion were observed at 4 weeks after surgery. However coordinated movements of the hind limbs in locomotion were not observed until the end of the experiment. After 12 weeks, an intracardiac perfusion was performed to remove the thoracic spine and the spinal cord. There were no signs of infection. The bone fusion of the Th7 and Th9 vertebrae was observed to be complete in all specimens and the alignment of the thoracic spine was maintained. The spinal canal was also correctly reconstituted. The stumps of the spinal cord were connected. Light microscopy of the cord showed that scar tissue intervened at the connection site. Cavitation inhibiting the axonal regeneration was also observed. This model was also made on the assumption that glial scar tissue inhibits axonal regeneration in chronic SCI. Axonal regeneration was not observed across the transected spinal cord in this model. Attempts should be made to minimize the damage to the spinal cord and the surgery time for successful axonal regeneration to occur. The model developed in this study may be useful in the study of axonal regeneration in SCI.

19.
Acta Cytol ; 56(4): 401-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22846805

RESUMO

OBJECTIVES: The possibility of leakage of CD34+ bone marrow stem cells from the peripheral blood into the coelomic cavity and the capability of coelomic fluid factors to induce their non-hematogenous differentiation were examined by immunocytochemistry (ICC). STUDY DESIGN: Body cavity fluid smears from 12 and 18 patients with and without cancer, respectively, were processed for double immunoperoxidase or double fluorescent ICC methods using antibodies against CD34, CD14, CD16, CD68, AE1/AE3, epidermal growth factor receptor (EGFR), D2-40, and CA125. RESULTS: Heavily irritated exudative fluid from 6 patients with or without cancer contained a few small round cells positive for CD34. Some of them co-expressed myeloid or monocytic markers such as CD14, CD68 or CD16. Some of the CD34+ cells also co-expressed AE1/AE3 or EGFR. In addition, D2-40 and CA125 were also demonstrated though the expression of the latter was quite sporadic. CONCLUSION: These findings support the concept that CD34+ stem cells can be released into irritated body cavity fluid and the possibility of subsequent differentiation to a non-hematogenous lineage under the influence of local humoral factors, in agreement with our previous in vitro experiments. The possibility of such a phenomenon should be kept in mind when body cavity fluid specimens are analyzed by ICC for diagnostic purposes.


Assuntos
Líquidos Corporais/citologia , Células-Tronco Hematopoéticas/citologia , Neoplasias/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos CD34/metabolismo , Feminino , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imuno-Histoquímica , Imunofenotipagem , Masculino , Pessoa de Meia-Idade
20.
J Clin Biochem Nutr ; 51(1): 68-75, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22798716

RESUMO

Recently, arginase is suggested to regulate nitric oxide production by competing with nitric oxide synthase for the same substrate, L-arginine, in experimental asthma. We investigated the role of arginase and its relationship to nitric oxide production after spinal cord injury. Rats were subjected to laminectomy and complete transection of their spinal cords (injury group) or laminectomy only (sham group). In the injury group, arginase I was increased in the macrophages at the transection edge, and the peak was observed 48 h after spinal cord injury. However, nitric oxide production decreased significantly in the injury group despite increased nitric oxide synthase2 mRNA expression compared with the sham group. We also demonstrated the reduction in L-arginine concentrations, which was inversely associated with changes in arginase activity. Therefore, arginase appeared to regulate nitric oxide production by consuming L-arginine. The regulation of arginase activity and L-arginine levels may improve nitroxidative stress and reduce tissue damage in spinal cord injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...