Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 608(7921): 40-41, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35879611

Assuntos
Nanofios
2.
Nat Nanotechnol ; 14(11): 1019-1023, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31686007

RESUMO

An advanced understanding of ultrafast coherent electron dynamics is necessary for the application of submicrometre devices under a non-equilibrium drive to quantum technology, including on-demand single-electron sources1, electron quantum optics2-4, qubit control5-7, quantum sensing8,9 and quantum metrology10. Although electron dynamics along an extended channel has been studied extensively2-4,11, it is hard to capture the electron motion inside submicrometre devices. The frequency of the internal, coherent dynamics is typically higher than 100 GHz, beyond the state-of-the-art experimental bandwidth of less than 10 GHz (refs. 6,12,13). Although the dynamics can be detected by means of a surface-acoustic-wave quantum dot14, this method does not allow for a time-resolved detection. Here we theoretically and experimentally demonstrate how we can observe the internal dynamics in a silicon single-electron source that comprises a dynamic quantum dot in an effective time-resolved fashion with picosecond resolution using a resonant level as a detector. The experimental observations and the simulations with realistic parameters show that a non-adiabatically excited electron wave packet15 spatially oscillates quantum coherently at ~250 GHz inside the source at 4.2 K. The developed technique may, in future, enable the detection of fast dynamics in cavities, the control of non-adiabatic excitations15 or a single-electron source that emits engineered wave packets16. With such achievements, high-fidelity initialization of flying qubits5, high-resolution and high-speed electromagnetic-field sensing8 and high-accuracy current sources17 may become possible.

3.
Sci Rep ; 7: 45137, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28322339

RESUMO

A gigahertz single-electron (SE) pump with a semiconductor charge island is promising for a future quantum current standard. However, high-accuracy current in the nanoampere regime is still difficult to achieve because the performance of SE pumps tends to degrade significantly at frequencies exceeding 1 GHz. Here, we demonstrate robust SE pumping via a single-trap level in silicon up to 7.4 GHz, at which the pumping current exceeds 1 nA. An accuracy test with an uncertainty of about one part per million (ppm) reveals that the pumping current deviates from the ideal value by only about 20 ppm at the flattest part of the current plateau. This value is two orders of magnitude better than the best one reported in the nanoampere regime. In addition, the pumping accuracy is almost unchanged up to 7.4 GHz, probably due to strong electron confinement in the trap. These results indicate that trap-mediated SE pumping is promising for achieving the practical operation of the quantum current standard.

4.
Nano Lett ; 10(5): 1549-53, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20377235

RESUMO

Control of the local magnetic fields desirable for spintronics and quantum information technology is not well developed. Existing methods produce either moderately small local fields or one field orientation. We present designs of patterned magnetic elements that produce remanent fields of 50 mT (potentially 200 mT) confined to chosen, submicrometer regions in directions perpendicular to an external initializing field. A wide variety of magnetic-field profiles on nanometer scales can be produced with the option of applying electric fields, for example, to move a quantum dot between regions where the magnetic-field direction or strength is different. We have confirmed our modeling by measuring the fields in one design using electron holography.


Assuntos
Magnetismo/instrumentação , Nanotecnologia/instrumentação , Campos Eletromagnéticos , Desenho de Equipamento , Análise de Falha de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA