Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Breed Sci ; 71(3): 344-353, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34776741

RESUMO

Lisianthus (Eustoma grandiflorum) is an important floricultural crop cultivated worldwide. Despite its commercial importance, few DNA markers are available for molecular genetic research. In this study, we constructed a genetic linkage map and to detect quantitative trait loci (QTLs) for important agronomic traits of lisianthus. To develop simple sequence repeat (SSR) markers, we used 454-pyrosequencing technology to obtain genomic shotgun sequences and subsequently identified 8263 putative SSRs. A total of 3990 primer pairs were designed in silico and 1189 unique primer pairs were extracted through a BLAST search. Amplification was successful for more than 1000 primer pairs, and ultimately 278 SSR markers exhibited polymorphism between the two lisianthus accessions evaluated. Based on these markers, a genetic linkage map was constructed using a breeding population derived from crosses between the two accessions, for which flowering time differed (>140 days when grown under 20°C). We detected one QTL associated with flowering time (phenotypic variance, 27%; LOD value, 3.7). The SSR marker located at this QTL may account for variation in flowering time among accessions (i.e., three accessions whose nodes of the first flower were over 30 had late-flowering alleles of this QTL).

2.
Hortic Res ; 8(1): 49, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33642580

RESUMO

Haplotypes provide useful information for genomics-based approaches, genomic prediction, and genome-wide association study. As a small number of superior founders have contributed largely to the breeding history of fruit trees, the information of founder haplotypes may be relevant for performing the genomics-based approaches in these plants. In this study, we proposed a method to estimate 14 haplotypes from 7 founders and automatically trace the haplotypes forward to apple parental (185 varieties) and breeding (659 F1 individuals from 16 full-sib families) populations based on 11,786 single-nucleotide polymorphisms, by combining multiple algorithms. Overall, 92% of the single-nucleotide polymorphisms information in the parental and breeding populations was characterized by the 14 founder haplotypes. The use of founder haplotype information improved the accuracy of genomic prediction in 7 traits and the resolution of genome-wide association study in 13 out of 27 fruit quality traits analyzed in this study. We also visualized the significant propagation of the founder haplotype with the largest genetic effect in genome-wide association study over the pedigree tree of the parental population. These results suggest that the information of founder haplotypes can be useful for not only genetic improvement of fruit quality traits in apples but also for understanding the selection history of founder haplotypes in the breeding program of Japanese apple varieties.

3.
Pest Manag Sci ; 77(1): 313-324, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33411414

RESUMO

BACKGROUND: The investigation of molecular mechanisms and evolution of resistance to insecticides is an ongoing challenge, as researchers must provide guidance to manage the resistance to achieve sustainable production in agriculture. Predicting, monitoring, and managing insecticide resistance requires information on the origins, selection, and spread of resistance genes. The resistance of Plutella xylostella (L.) against diamide insecticides is becoming an increasingly severe problem in east and southeast Asia. In this study, the evolution of resistance was investigated using a resistance allele [ryanodine receptor (RyR); G4946E mutation] and its flanking regions, as well as mitochondrial cytochrome c oxidase subunit I (mtCOI). RESULTS: The sequences of the flanking region of the G4946E and mtCOI suggested that the G4946E mutation has a key role in resistance. Furthermore, the G4946E mutation has multiple origins, and congenic resistant mutations have spread across east and southeast Asia, despite substantial geographical barriers. In addition, the susceptibility of field populations partially recovered during winter, based on the observed decrease in the G4946E (resistant allele) frequency. Finally, the resistance level indexed by the frequency of the E4946 allele was significantly lower in non-overwintering regions than in overwintering regions. CONCLUSION: The information of the present study is useful to monitor resistance using molecular markers and to develop strategies to delay the evolution of diamide resistance.


Assuntos
Inseticidas , Mariposas , Alelos , Animais , Sudeste Asiático , Diamida , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mariposas/genética
4.
Breed Sci ; 70(4): 438-448, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32968346

RESUMO

As prickles cause labour inefficiency during cultivation and scratches on the skin of fruits during transportation, they are considered undesirable traits of eggplant (Solanum melongena L.). Because the molecular basis of prickle emergence has not been entirely revealed in plants, we mapped an eggplant semi-dominant Prickle (Pl) gene locus, which causes the absence of prickles, on chromosome 6 of a linkage map of the F2 population derived from crossing the no-prickly cultivar 'Togenashi-senryo-nigo' and the prickly line LS1934. By performing synteny mapping with tomato, the genomic region corresponding to the eggplant Pl locus was identified. Through bacterial artificial chromosome (BAC) screening, positive BAC clones and the contig sequence that harbour the Pl locus in the prickly eggplant genome were revealed. The BAC contig length was 133 kb, and it contained 16 predicted genes. Among them, a characteristic 0.5-kb insertion/deletion was detected. As the 0.5-kb insertion was commonly identified with the prickly phenotype worldwide, a primer pair that amplifies the insertion/deletion could be used for marker-assisted selection of the no-prickly phenotype. Such findings contribute to map-based-cloning of the Pl gene and the understanding of gene function, ultimately providing new insights into the regulatory molecular mechanisms underlying prickle emergence in plants.

5.
Proc Natl Acad Sci U S A ; 117(21): 11836-11842, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32398372

RESUMO

Systematic mappings of protein interactome networks have provided invaluable functional information for numerous model organisms. Here we develop PCR-mediated Linkage of barcoded Adapters To nucleic acid Elements for sequencing (PLATE-seq) that serves as a general tool to rapidly sequence thousands of DNA elements. We validate its utility by generating the ORFeome for Oryza sativa covering 2,300 genes and constructing a high-quality protein-protein interactome map consisting of 322 interactions between 289 proteins, expanding the known interactions in rice by roughly 50%. Our work paves the way for high-throughput profiling of protein-protein interactions in a wide range of organisms.


Assuntos
Fases de Leitura Aberta/genética , Oryza/genética , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas/genética , Análise de Sequência de DNA/métodos , Biologia Computacional/métodos , DNA de Plantas/genética , Bases de Dados Genéticas , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
6.
Nat Commun ; 10(1): 4033, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31562302

RESUMO

Eukaryotic positive-strand RNA viruses replicate their genomes in membranous compartments formed in a host cell, which sequesters the dsRNA replication intermediate from antiviral immune surveillance. Here, we find that soybean has developed a way to overcome this sequestration. We report the positional cloning of the broad-spectrum soybean mosaic virus resistance gene Rsv4, which encodes an RNase H family protein with dsRNA-degrading activity. An active-site mutant of Rsv4 is incapable of inhibiting virus multiplication and is associated with an active viral RNA polymerase complex in infected cells. These results suggest that Rsv4 enters the viral replication compartment and degrades viral dsRNA. Inspired by this model, we design three plant-gene-derived dsRNases that can inhibit the multiplication of the respective target viruses. These findings suggest a method for developing crops resistant to any target positive-strand RNA virus by fusion of endogenous host genes.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Glycine max/imunologia , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Potyvirus/genética , RNA Polimerases Dirigidas por DNA/imunologia , Resistência à Doença/genética , Genes de Plantas , Interações Hospedeiro-Patógeno/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/imunologia , Potyvirus/imunologia , RNA de Cadeia Dupla/genética , RNA Viral/genética , Glycine max/genética , Glycine max/virologia , Replicação Viral/imunologia
7.
Anim Sci J ; 90(10): 1362-1376, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31407448

RESUMO

We investigated potential relationships between rumen microbiota and milk production in dairy cows during the transition period. Twelve dairy cows were divided into a low-yield (LY) or high-yield (HY) group based on their milk yield. Rumen samples were taken from dairy cows at 3 weeks before parturition, and at 4, 8, and 12 weeks after parturition. 16S rDNA-based metagenomic analysis showed that diversities of rumen microbiota in both groups were similar and the number of operational taxonomic units (OTUs) was lower in the postpartum than prepartum period in both groups. The abundance of Bacteroidetes and ratio of Bacteroidetes:Firmicutes was higher in the HY than the LY group. OTUs assigned to Prevotella bryantii, Fibrobacter succinogenes, Ruminococcus albus, Butyrivibrio fibrisolvens, and Succinivibrio sp. were abundant in the HY group. These OTUs were significantly related to the propionate molar proportion of rumen fluids in the HY group. OTUs assigned to Lachnospiraceae, Bifidobacterium sp. and Saccharofermentans were dominant in the LY group. Predictive functional profiling revealed that abundance of gene families involved in amino acid and vitamin metabolism was higher in the HY than the LY group. These results suggest that the community structure and fermentation products of rumen microbiota could be associated with milk production of dairy cows.


Assuntos
Rúmen/microbiologia , Animais , Bovinos , Feminino , Microbioma Gastrointestinal , Lactação , Metagenoma , Leite , Parto , Período Pós-Parto , Gravidez
8.
Breed Sci ; 69(1): 19-29, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31086480

RESUMO

Cryptomeria japonica is a major forestry tree species in Japan. Male sterility of the species is caused by a recessive gene, which shows dysfunction of pollen development and results in no dispersed pollen. Because the pollen of C. japonica induces pollinosis, breeding of pollen-free C. japonica is desired. In this study, single nucleotide polymorphism (SNP) markers located at 1.78 and 0.58 cM to a male sterility locus (MS1) were identified from an analysis of RNA-Seq and RAD-Seq, respectively. SNPs closely linked to MS1 were first scanned by a method similar to MutMap, where a type of index was calculated to measure the strength of the linkage between a marker sequence and MS1. Linkage analysis of selected SNP markers confirmed a higher efficiency of the current method to construct a partial map around MS1. Allele-specific PCR primer pair for the most closely linked SNP with MS1 was developed as a codominant marker, and visualization of the PCR products on an agarose gel enabled rapid screening of male sterile C. japonica. The allele-specific primers developed in this study would be useful for establishing the selection of male sterile C. japonica.

9.
BMC Plant Biol ; 19(1): 132, 2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30961541

RESUMO

BACKGROUND: The mechanism underlying the interaction between host plant and host-selective toxin (HST)-producing Alternaria alternata during infection is of particular interest for sustainable crop production. Alternaria blotch of apple (Malus × domestica Borkh.) caused by A. alternata apple pathotype is a major disease particularly in East Asia, which is the largest producer of apples globally. A single dominant gene, Alt, controls the susceptibility of the apple cultivar 'Delicious' to Alternaria blotch. In this study, we fine mapped the Alt locus and characterized three potential candidate genes. RESULTS: We used 797 F1 individuals derived from 15 crosses between apple accessions susceptible (Alt/alt) and resistant (alt/alt) to Alternaria blotch to construct physical and genetic maps of the Alt locus located on the top of chromosome 11. Susceptible accessions were derived from 'Delicious.' To fine map the Alt locus, we constructed a BAC library of 'Starking Delicious,' a sport of 'Delicious,' and used graphical genotyping to delimit the Alt locus to a region of 43 kb. Three genes predicted within the candidate Alt region were potentially involved in plant defense response, among which the gene encoding a coiled coil-nucleotide binding-leucine rich repeat (CC-NB-LRR) type disease resistance protein was the most promising. Moreover, a 12-bp insertion was uniquely identified in the 5' untranslated region of the Alt-associated allele of this gene, the presence or absence of which co-segregated with the susceptibility or resistance to A. alternata apple pathotype, respectively, among 43 tested cultivars including old ones and founders of modern apple breeding. CONCLUSION: A disease resistance protein has been suggested as a determinant of susceptibility/resistance to HST-producing A. alternata for the first time. Our finding provides new insight into the mechanism of HST-mediated disease control used by A. alternata against host plants.


Assuntos
Alternaria/fisiologia , Resistência à Doença/genética , Malus/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Biblioteca Gênica , Proteínas de Repetições Ricas em Leucina , Malus/imunologia , Malus/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas/genética , Proteínas/metabolismo
10.
DNA Res ; 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29481583

RESUMO

In common wheat, the development of genotyping platforms has been hampered by the large size of the genome, its highly repetitive elements and its allohexaploid nature. However, recent advances in sequencing technology provide opportunities to resolve these difficulties. Using next-generation sequencing and gene-targeting sequence capture, 12,551 nucleotide polymorphisms were detected in the common wheat varieties 'Hatsumochi' and 'Kitahonami' and were assigned to chromosome arms using International Wheat Genome Sequencing Consortium survey sequences. Because the number of markers for D genome chromosomes in commercially available wheat single nucleotide polymorphism arrays is insufficient, we developed markers using a genome-specific amplicon sequencing strategy. Approximately 80% of the designed primers successfully amplified D genome-specific products, suggesting that by concentrating on a specific subgenome, we were able to design successful markers as efficiently as could be done in a diploid species. The newly developed markers were uniformly distributed across the D genome and greatly extended the total coverage. Polymorphisms were surveyed in six varieties, and 31,542 polymorphic sites and 5,986 potential marker sites were detected in the D genome. The marker development and genotyping strategies are cost effective, robust and flexible and may enhance multi-sample studies in the post-genomic era in wheat.

11.
DNA Res ; 25(2): 123-136, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29186379

RESUMO

Using progeny of a cross between Japanese soybean Enrei and Chinese soybean Peking, we developed a high-density linkage map and chromosomal segment substitution lines (CSSLs). The map consists of 2,177 markers with polymorphism information for 32 accessions and provides a detailed genetic framework for these markers. The marker order on the linkage map revealed close agreement with that on the chromosome-scale assembly, Wm82.a2.v1. The differences, especially on Chr. 5 and Chr. 11, in the present map provides information to identify regions in the genome assembly where additional information is required to resolve marker order and assign remaining scaffolds. To cover the entire soybean genome, we used 999 BC3F2 backcross plants and selected 103 CSSLs carrying chromosomal segments from Peking in the genetic background of Enrei. Using these low-genetic-complexity resources, we dissected variation in traits related to flowering, maturity and yield into approximately 50 reproducible quantitative trait loci (QTLs) and evaluated QTLs with small genetic effects as single genetic factors in a uniform genetic background. CSSLs developed in this study may be good starting material for removing the unfavourable characteristics of Peking during pre-breeding and for isolation of genes conferring disease and stress resistance that have not yet been characterized.


Assuntos
Mapeamento Cromossômico , Genoma de Planta , Glycine max/genética , Polimorfismo Genético , Locos de Características Quantitativas , Genômica , Análise de Sequência de DNA
13.
BMC Genomics ; 18(1): 683, 2017 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-28870156

RESUMO

BACKGROUND: Chrysanthemum morifolium is one of the most economically valuable ornamental plants worldwide. Chrysanthemum is an allohexaploid plant with a large genome that is commercially propagated by vegetative reproduction. New cultivars with different floral traits, such as color, morphology, and scent, have been generated mainly by classical cross-breeding and mutation breeding. However, only limited genetic resources and their genome information are available for the generation of new floral traits. RESULTS: To obtain useful information about molecular bases for floral traits of chrysanthemums, we read expressed sequence tags (ESTs) of chrysanthemums by high-throughput sequencing using the 454 pyrosequencing technology. We constructed normalized cDNA libraries, consisting of full-length, 3'-UTR, and 5'-UTR cDNAs derived from various tissues of chrysanthemums. These libraries produced a total number of 3,772,677 high-quality reads, which were assembled into 213,204 contigs. By comparing the data obtained with those of full genome-sequenced species, we confirmed that our chrysanthemum contig set contained the majority of all expressed genes, which was sufficient for further molecular analysis in chrysanthemums. CONCLUSION: We confirmed that our chrysanthemum EST set (contigs) contained a number of contigs that encoded transcription factors and enzymes involved in pigment and aroma compound metabolism that was comparable to that of other species. This information can serve as an informative resource for identifying genes involved in various biological processes in chrysanthemums. Moreover, the findings of our study will contribute to a better understanding of the floral characteristics of chrysanthemums including the myriad cultivars at the molecular level.


Assuntos
Chrysanthemum/anatomia & histologia , Chrysanthemum/genética , Etiquetas de Sequências Expressas/metabolismo , Flores/anatomia & histologia , Genes de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Sequência de Aminoácidos , Carotenoides/metabolismo , Anotação de Sequência Molecular , Terpenos/metabolismo , Fatores de Transcrição/genética
14.
Sci Rep ; 7(1): 4721, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28680114

RESUMO

Novel genomics-based approaches such as genome-wide association studies (GWAS) and genomic selection (GS) are expected to be useful in fruit tree breeding, which requires much time from the cross to the release of a cultivar because of the long generation time. In this study, a citrus parental population (111 varieties) and a breeding population (676 individuals from 35 full-sib families) were genotyped for 1,841 single nucleotide polymorphisms (SNPs) and phenotyped for 17 fruit quality traits. GWAS power and prediction accuracy were increased by combining the parental and breeding populations. A multi-kernel model considering both additive and dominance effects improved prediction accuracy for acidity and juiciness, implying that the effects of both types are important for these traits. Genomic best linear unbiased prediction (GBLUP) with linear ridge kernel regression (RR) was more robust and accurate than GBLUP with non-linear Gaussian kernel regression (GAUSS) in the tails of the phenotypic distribution. The results of this study suggest that both GWAS and GS are effective for genetic improvement of citrus fruit traits. Furthermore, the data collected from breeding populations are beneficial for increasing the detection power of GWAS and the prediction accuracy of GS.


Assuntos
Citrus/genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Locos de Características Quantitativas , Genoma de Planta , Modelos Genéticos , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Seleção Genética , Análise de Sequência de DNA
15.
Evol Lett ; 1(5): 232-244, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30283652

RESUMO

Wolbachia is a maternally inherited ubiquitous endosymbiotic bacterium of arthropods that displays a diverse repertoire of host reproductive manipulations. For the first time, we demonstrate that Wolbachia manipulates sex chromosome inheritance in a sexually reproducing insect. Eurema mandarina butterfly females on Tanegashima Island, Japan, are infected with the wFem Wolbachia strain and produce all-female offspring, while antibiotic treatment results in male offspring. Fluorescence in situ hybridization (FISH) revealed that wFem-positive and wFem-negative females have Z0 and WZ sex chromosome sets, respectively, demonstrating the predicted absence of the W chromosome in wFem-infected lineages. Genomic quantitative polymerase chain reaction (qPCR) analysis showed that wFem-positive females lay only Z0 eggs that carry a paternal Z, whereas females from lineages that are naturally wFem-negative lay both WZ and ZZ eggs. In contrast, antibiotic treatment of adult wFem females resulted in the production of Z0 and ZZ eggs, suggesting that this Wolbachia strain can disrupt the maternal inheritance of Z chromosomes. Moreover, most male offspring produced by antibiotic-treated wFem females had a ZZ karyotype, implying reduced survival of Z0 individuals in the absence of feminizing effects of Wolbachia. Antibiotic treatment of wFem-infected larvae induced male-specific splicing of the doublesex (dsx) gene transcript, causing an intersex phenotype. Thus, the absence of the female-determining W chromosome in Z0 individuals is functionally compensated by Wolbachia-mediated conversion of sex determination. We discuss how Wolbachia may manipulate the host chromosome inheritance and that Wolbachia may have acquired this coordinated dual mode of reproductive manipulation first by the evolution of female-determining function and then cytoplasmically induced disruption of sex chromosome inheritance.

16.
Sci Rep ; 6: 38552, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27917947

RESUMO

Biochemical oxygen demand (BOD) is a widely used index of water-quality assessment. Since bioelectrochemical BOD biosensors require anaerobic conditions for anodic reactions, they are not directly used in aerobic environments such as aeration tanks. Normally, the BOD biosensors are closed-type, where the anode is packed inside a closed chamber to avoid exposure to oxygen. In this study, a novel bioelectrochemical open-type biosensor was designed for in-situ monitoring of BOD during intermittent aeration. The open-type anode, without any protection against exposure to oxygen, was directly inserted into an intermittently aerated tank filled with livestock wastewater. Anodic potential was controlled using a potentiostat. Interestingly, this novel biosensor generated similar levels of current under both aerating and non-aerating conditions, and showed a logarithmic correlation (R2 > 0.9) of current with BOD concentrations up to 250 mg/L. Suspended solids in the wastewater attached to and covered the whole anode, presumably leading to the production of anaerobic conditions inside the covered anode via biological oxygen removal. Exoelectrogenic anaerobes (Geobacter spp.) were detected inside the covered anode using the 16S-rRNA gene. This biosensor will have various practical applications, such as the automatic control of aeration intensity and the in-situ monitoring of natural water environments.

17.
Breed Sci ; 66(4): 499-515, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27795675

RESUMO

'Fuji' is one of the most popular and highly-produced apple cultivars worldwide, and has been frequently used in breeding programs. The development of genotypic markers for the preferable phenotypes of 'Fuji' is required. Here, we aimed to define the haplotypes of 'Fuji' and find associations between haplotypes and phenotypes of five traits (harvest day, fruit weight, acidity, degree of watercore, and flesh mealiness) by using 115 accessions related to 'Fuji'. Through the re-sequencing of 'Fuji' genome, total of 2,820,759 variants, including single nucleotide polymorphisms (SNPs) and insertions or deletions (indels) were detected between 'Fuji' and 'Golden Delicious' reference genome. We selected mapping-validated 1,014 SNPs, most of which were heterozygous in 'Fuji' and capable of distinguishing alleles inherited from the parents of 'Fuji' (i.e., 'Ralls Janet' and 'Delicious'). We used these SNPs to define the haplotypes of 'Fuji' and trace their inheritance in relatives, which were shown to have an average of 27% of 'Fuji' genome. Analysis of variance (ANOVA) based on 'Fuji' haplotypes identified one quantitative trait loci (QTL) each for harvest time, acidity, degree of watercore, and mealiness. A haplotype from 'Delicious' chr14 was considered to dominantly cause watercore, and one from 'Ralls Janet' chr1 was related to low-mealiness.

18.
J Plant Res ; 129(6): 1109-1126, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27650512

RESUMO

Determining the molecular mechanism of fruit tree architecture is important for tree management and fruit production. An apple mutant 'McIntosh Wijcik', which was discovered as a bud mutation from 'McIntosh', exhibits a columnar growth phenotype that is controlled by a single dominant gene, Co. In this study, the mutation and the Co gene were analyzed. Fine mapping narrowed the Co region to a 101 kb region. Sequence analysis of the Co region and the original wild-type co region identified an insertion mutation of an 8202 bp long terminal repeat (LTR) retroposon in the Co region. Segregation analysis using a DNA marker based on the insertion polymorphism showed that the LTR retroposon was closely associated with the columnar growth phenotype. RNA-seq and RT-PCR analysis identified a promising Co candidate gene (91071-gene) within the Co region that is specifically expressed in 'McIntosh Wijcik' but not in 'McIntosh'. The 91071-gene was located approximately 16 kb downstream of the insertion mutation and is predicted to encode a 2-oxoglutarate-dependent dioxygenase involved in an unknown reaction. Overexpression of the 91071-gene in transgenic tobaccos and apples resulted in phenotypes with short internodes, like columnar apples. These data suggested that the 8202 bp retroposon insertion in 'McIntosh Wijcik' is associated with the short internodes of the columnar growth phenotype via upregulated expression of the adjacent 91071-gene. Furthermore, the DNA marker based on the insertion polymorphism could be useful for the marker-assisted selection of columnar apples.


Assuntos
Dioxigenases/genética , Malus/genética , Mutagênese Insercional/genética , Proteínas de Plantas/genética , Retroelementos/genética , Mapeamento Cromossômico , Dioxigenases/metabolismo , Malus/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA , Transcriptoma/genética
19.
Rice (N Y) ; 9(1): 34, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27457210

RESUMO

BACKGROUND: Grain size is an important trait that affects rice yield. Although many genes that contribute to grain size have been cloned from mutants or by quantitative trait locus (QTL) analysis based on bi-parental mapping, the molecular mechanisms underlying grain-size determination remain poorly understood. In this study, we identified the lines with the largest grain size and detected novel QTLs affecting the grain size. RESULTS: We screened the National Institute for Agrobiological Sciences Genebank database and identified two rice lines, BG23 with the widest grain and LG10 with the longest grain. Using these two lines, we performed QTL analysis for grain size. Eight QTLs were detected during the QTL analyses using F2 populations derived from crosses between the large-grain lines BG23 or LG10 and the middle-size grain cultivars Nipponbare and Kasalath. Both BG23 and LG10 possessed large-grain alleles of four major QTLs: GW2, GS3, qSW5/GW5, and GW8. Other three minor QTLs were derived from BG23. However, these QTLs did not explain the differences in grain size between these two lines. Additionally, four QTLs for grain length or width were detected in an F2 population derived from a cross between BG23 and LG10; this population lacked the strong effects of the four major QTLs shared by both parent plants. Of these newly detected QTLs, the effects of two QTLs, GL3b and GL6, were confirmed by progeny testing. Comparison of the length of inner epidermal cells in plants homozygous for BG23 and LG10 alleles indicated that GL3b and GL6 genes regulate cell elongation and cell division, respectively. CONCLUSIONS: In this study, we detected 12 loci including 14 QTLs regulating grain size from two lines with largest grains available in Japanese stock. Of these loci, we confirmed the effect of two gene loci and mapped their candidate region. Identification of novel genes regulating grain size will contribute to our understanding of the molecular mechanisms controlling grain size.

20.
Breed Sci ; 66(2): 213-25, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27162493

RESUMO

A core collection of Japanese wheat varieties (JWC) consisting of 96 accessions was established based on their passport data and breeding pedigrees. To clarify the molecular basis of the JWC collection, genome-wide single-nucleotide polymorphism (SNP) genotyping was performed using the genotyping-by-sequencing (GBS) approach. Phylogenetic tree and population structure analyses using these SNP data revealed the genetic diversity and relationships among the JWC accessions, classifying them into four groups; "varieties in the Hokkaido area", "modern varieties in the northeast part of Japan", "modern varieties in the southwest part of Japan" and "classical varieties including landraces". This clustering closely reflected the history of wheat breeding in Japan. Furthermore, to demonstrate the utility of the JWC collection, we performed a genome-wide association study (GWAS) for three traits, namely, "days to heading in autumn sowing", "days to heading in spring sowing" and "culm length". We found significantly associated SNP markers with each trait, and some of these were closely linked to known major genes for heading date or culm length on the genetic map. Our study indicates that this JWC collection is a useful set of germplasm for basic and applied research aimed at understanding and utilizing the genetic diversity among Japanese wheat varieties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...