Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Neurol Surg A Cent Eur Neurosurg ; 85(2): 182-191, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36746397

RESUMO

BACKGROUND: Minimally invasive spinal surgery (ESS) are both well-established surgical techniques for lumbar spinal stenosis; however, there is limited literature comparing the efficacy of the two techniques with respect to radiologic decompression data. METHODS: In this review, PubMed, Google Scholar, and Scopus databases were systematically searched from inception until July 2022 for studies that reported the radiologic outcomes of endoscopic and minimally invasive approaches for decompressive spinal surgery, namely, the spinal canal area, neural foraminal area, and neural foraminal heights. RESULTS: Of the 378 articles initially retrieved using MeSH and keyword search, 9 studies reporting preoperative and postoperative spinal areas and foraminal areas and heights were finally included in our review. Of the total 581 patients, 391 (67.30%) underwent MISS and 190 (32.70%) underwent ESS. The weighted mean difference between the spinal canal diameter in pre- and postoperative conditions was 56.64 ± 7.11 and 79.52 ± 21.31 mm2 in the MISS and ESS groups, respectively. ESS was also associated with a higher mean difference in the foraminal area postoperatively (72 ± 1 vs. 35.81 ± 11.3 mm2 in the MISS and ESS groups, respectively), but it was comparable to MISS in terms of the foraminal height (0.32 ± 0.037 vs. 0.29 ± 0.03 cm in the MISS and endoscopic groups, respectively). CONCLUSIONS: Compared with MISS, ESS was associated with improved radiologic parameters, including spinal canal area and neural foraminal area in the lumbar spinal segments. Both techniques led to the same endpoint of neural decompression when starting with a more severe compression. However, the present data do not allow the correlation of the radiographic results with the related clinical outcomes.


Assuntos
Descompressão Cirúrgica , Estenose Espinal , Humanos , Descompressão Cirúrgica/métodos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Endoscopia/métodos , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Estenose Espinal/diagnóstico por imagem , Estenose Espinal/cirurgia , Resultado do Tratamento , Estudos Retrospectivos
2.
J Pers Med ; 13(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38138888

RESUMO

(1) Background: Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with limited treatment options and poor prognosis. Bacillus Calmette-Guérin (BCG), a live attenuated strain of Mycobacterium bovis, has been used as an immunotherapeutic agent in bladder cancer and has shown non-specific beneficial effects. This report presents a unique case of GBM regression following BCG therapy for bladder cancer, suggesting the potential systemic immunomodulatory effects of BCG on GBM. (2) Case Presentation: A 67-year-old male with a history of bladder cancer treated with BCG presented with neurological symptoms. Imaging revealed two GBM lesions, and surgery was performed to remove one. Subsequently, the patient experienced complete tumor regression after initial stability. (3) Conclusions: This case highlights the potential of BCG or other immunotherapies in GBM treatment and underscores the need for further research. Understanding the immunomodulatory effects of BCG on GBM could lead to innovative therapies for this devastating disease; although, overcoming the immune evasion mechanisms in the brain is a significant challenge. Further investigation is warranted to explore this promising avenue of research.

3.
J Neurol Sci ; 453: 120809, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37774561

RESUMO

Reward Deficiency Syndrome (RDS), particularly linked to addictive disorders, costs billions of dollars globally and has resulted in over one million deaths in the United States (US). Illicit substance use has been steadily rising and in 2021 approximately 21.9% (61.2 million) of individuals living in the US aged 12 or older had used illicit drugs in the past year. However, only 1.5% (4.1 million) of these individuals had received any substance use treatment. This increase in use and failure to adequately treat or provide treatment to these individuals resulted in 106,699 overdose deaths in 2021 and increased in 2022. This article presents an alternative non-pharmaceutical treatment approach tied to gene-guided therapy, the subject of many decades of research. The cornerstone of this paradigm shift is the brain reward circuitry, brain stem physiology, and neurotransmitter deficits due to the effects of genetic and epigenetic insults on the interrelated cascade of neurotransmission and the net release of dopamine at the Ventral Tegmental Area -Nucleus Accumbens (VTA-NAc) reward site. The Genetic Addiction Risk Severity (GARS) test and pro-dopamine regulator nutraceutical KB220 were combined to induce "dopamine homeostasis" across the brain reward circuitry. This article aims to encourage four future actionable items: 1) the neurophysiologically accurate designation of, for example, "Hyperdopameism /Hyperdopameism" to replace the blaming nomenclature like alcoholism; 2) encouraging continued research into the nature of dysfunctional brainstem neurotransmitters across the brain reward circuitry; 3) early identification of people at risk for all RDS behaviors as a brain check (cognitive testing); 4) induction of dopamine homeostasis using "precision behavioral management" along with the coupling of GARS and precision Kb220 variants; 5) utilization of promising potential treatments include neuromodulating modalities such as Transmagnetic stimulation (TMS) and Deep Brain Stimulation(DBS), which target different areas of the neural circuitry involved in addiction and even neuroimmune agents like N-acetyl-cysteine.

4.
J Pers Med ; 13(5)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37240880

RESUMO

Pain generator-based lumbar spinal decompression surgery is the backbone of modern spine care. In contrast to traditional image-based medical necessity criteria for spinal surgery, assessing the severity of neural element encroachment, instability, and deformity, staged management of common painful degenerative lumbar spine conditions is likely to be more durable and cost-effective. Targeting validated pain generators can be accomplished with simplified decompression procedures associated with lower perioperative complications and long-term revision rates. In this perspective article, the authors summarize the current concepts of successful management of spinal stenosis patients with modern transforaminal endoscopic and translaminar minimally invasive spinal surgery techniques. They represent the consensus statements of 14 international surgeon societies, who have worked in collaborative teams in an open peer-review model based on a systematic review of the existing literature and grading the strength of its clinical evidence. The authors found that personalized clinical care protocols for lumbar spinal stenosis rooted in validated pain generators can successfully treat most patients with sciatica-type back and leg pain including those who fail to meet traditional image-based medical necessity criteria for surgery since nearly half of the surgically treated pain generators are not shown on the preoperative MRI scan. Common pain generators in the lumbar spine include (a) an inflamed disc, (b) an inflamed nerve, (c) a hypervascular scar, (d) a hypertrophied superior articular process (SAP) and ligamentum flavum, (e) a tender capsule, (f) an impacting facet margin, (g) a superior foraminal facet osteophyte and cyst, (h) a superior foraminal ligament impingement, (i) a hidden shoulder osteophyte. The position of the key opinion authors of the perspective article is that further clinical research will continue to validate pain generator-based treatment protocols for lumbar spinal stenosis. The endoscopic technology platform enables spine surgeons to directly visualize pain generators, forming the basis for more simplified targeted surgical pain management therapies. Limitations of this care model are dictated by appropriate patient selection and mastering the learning curve of modern MIS procedures. Decompensated deformity and instability will likely continue to be treated with open corrective surgery. Vertically integrated outpatient spine care programs are the most suitable setting for executing such pain generator-focused programs.

5.
Sleep Sci ; 15(3): 356-362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158717

RESUMO

Objectives: Military personnel are unique occupational groups who happen to frequently experience sleep insuffciencies. Since sleep disorders are known to be linked to many psychiatric symptoms, sleep disturbance is a salient concern among active duty service members and veterans. Existing evidence indicates that although sleep disturbances co-occur with mental illnesses, there is a tendency to particularly label them as consequences of certain mental health issues. Material and Methods: This review focuses on the emerging evidence which identifies sleep disturbances as a precursor for mental illnesses. In this regard, the impact of sleep disturbance on the development of mental health outcomes including post-traumatic stress disorder (PTSD), depression, and anxiety has been thoroughly scrutinized. A systematic search was conducted using PubMed, Scopus, and Web of Science academic databases using appropriate keywords. Results: Reviewed evidence substantiates the predicting role of sleep complaints and disorders to herald PTSD, depression, and anxiety among military staff. Conclusion: Early diagnosis of sleep disturbances and properly addressing them in active-duty service members and veterans should be then sought to prevent the development and progression of consequent mental health- related comorbidities in this study group.

6.
J Pers Med ; 12(7)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35887540

RESUMO

Background: There are no data available on the levels of genetic networks between obsessive-compulsive disorder (OCD) and multiple sclerosis (MS). To this point, we aimed to investigate common mechanisms and pathways using bioinformatics approaches to find novel genes that may be involved in the pathogenesis of OCD in MS. Methods: To obtain gene-gene interactions for MS and OCD, the STRING database was used. Cytoscape was then used to reconstruct and visualize graphs. Then, ToppGene and Enrichr were used to identify the main pathological processes and pathways involved in MS-OCD novel genes. Additionally, to predict transcription factors and microRNAs (miRNAs), the Enrichr database and miRDB database were used, respectively. Results: Our bioinformatics analysis showed that the signal transducer and the activator of transcription 3 (STAT3) and neurotrophic receptor tyrosine kinase 2 (NTRK2) genes had connections with 32 shared genes between MS and OCD. Furthermore, STAT3 and NTRK2 had the greatest enrichment parameters (i.e., molecular function, cellular components, and signaling pathways) among ten hub genes. Conclusions: To summarize, data from our bioinformatics analysis showed that there was a significant overlap in the genetic components of MS and OCD. The findings from this study make two contributions to future studies. First, predicted mechanisms related to STAT3 and NTRK2 in the context of MS and OCD can be investigated for pharmacological interventions. Second, predicted miRNAs related to STAT3 and NTRK2 can be tested as biomarkers in MS with OCD comorbidity. However, our study involved bioinformatics research; therefore, considerable experimental work (e.g., postmortem studies, case-control studies, and cohort studies) will need to be conducted to determine the etiology of OCD in MS from a mechanistic view.

7.
J Pers Med ; 12(7)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35887562

RESUMO

Background: Endoscopically visualized spine surgery has become an essential tool that aids in identifying and treating anatomical spine pathologies that are not well demonstrated by traditional advanced imaging, including MRI. These pathologies may be visualized during endoscopic lumbar decompression (ELD) and categorized into primary pain generators (PPG). Identifying these PPGs provides crucial information for a successful outcome with ELD and forms the basis for our proposed personalized spine care protocol (SpineScreen). Methods: a prospective study of 412 patients from 7 endoscopic practices consisting of 207 (50.2%) males and 205 (49.8%) females with an average age of 63.67 years and an average follow-up of 69.27 months was performed to compare the durability of targeted ELD based on validated primary pain generators versus image-based open lumbar laminectomy, and minimally invasive lumbar transforaminal interbody fusion (TLIF) using Kaplan-Meier median survival calculations. The serial time was determined as the interval between index surgery and when patients were censored for additional interventional and surgical treatments for low back-related symptoms. A control group was recruited from patients referred for a surgical consultation but declined interventional and surgical treatment and continued on medical care. Control group patients were censored when they crossed over into any surgical or interventional treatment group. Results: of the 412 study patients, 206 underwent ELD (50.0%), 61 laminectomy (14.8%), and 78 (18.9%) TLIF. There were 67 patients in the control group (16.3% of 412 patients). The most common surgical levels were L4/5 (41.3%), L5/S1 (25.0%), and L4-S1 (16.3%). At two-year f/u, excellent and good Macnab outcomes were reported by 346 of the 412 study patients (84.0%). The VAS leg pain score reduction was 4.250 ± 1.691 (p < 0.001). No other treatment during the available follow-up was required in 60.7% (125/206) of the ELD, 39.9% (31/78) of the TLIF, and 19.7% (12/61 of the laminectomy patients. In control patients, only 15 of the 67 (22.4%) control patients continued with conservative care until final follow-up, all of which had fair and poor functional Macnab outcomes. In patients with Excellent Macnab outcomes, the median durability was 62 months in ELD, 43 in TLIF, and 31 months in laminectomy patients (p < 0.001). The overall survival time in control patients was eight months with a standard error of 0.942, a lower boundary of 6.154, and an upper boundary of 9.846 months. In patients with excellent Macnab outcomes, the median durability was 62 months in ELD, 43 in TLIF, and 31 months in laminectomy patients versus control patients at seven months (p < 0.001). The most common new-onset symptom for censoring was dysesthesia ELD (9.4%; 20/206), axial back pain in TLIF (25.6%;20/78), and recurrent pain in laminectomy (65.6%; 40/61) patients (p < 0.001). Transforaminal epidural steroid injections were tried in 11.7% (24/206) of ELD, 23.1% (18/78) of TLIF, and 36.1% (22/61) of the laminectomy patients. The secondary fusion rate among ELD patients was 8.8% (18/206). Among TLIF patients, the most common additional treatments were revision fusion (19.2%; 15/78) and multilevel rhizotomy (10.3%; 8/78). Common follow-up procedures in laminectomy patients included revision laminectomy (16.4%; 10/61), revision ELD (11.5%; 7/61), and multilevel rhizotomy (11.5%; 7/61). Control patients crossed over into ELD (13.4%), TLIF (13.4%), laminectomy (10.4%) and interventional treatment (40.3%) arms at high rates. Most control patients treated with spinal injections (55.5%) had excellent and good functional outcomes versus 40.7% with fair and poor (3.7%), respectively. The control patients (93.3%) who remained in medical management without surgery or interventional care (14/67) had the worst functional outcomes and were rated as fair and poor. Conclusions: clinical outcomes were more favorable with lumbar surgeries than with non-surgical control groups. Of the control patients, the crossover rate into interventional and surgical care was 40.3% and 37.2%, respectively. There are longer symptom-free intervals after targeted ELD than with TLIF or laminectomy. Additional intervention and surgical treatments are more often needed to manage new-onset postoperative symptoms in TLIF- and laminectomy compared to ELD patients. Few ELD patients will require fusion in the future. Considering the rising cost of surgical spine care, we offer SpineScreen as a simplified and less costly alternative to traditional image-based care models by focusing on primary pain generators rather than image-based criteria derived from the preoperative lumbar MRI scan.

8.
J Alzheimers Dis ; 86(1): 21-42, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35034899

RESUMO

The COVID-19 pandemic has accelerated neurological, mental health disorders, and neurocognitive issues. However, there is a lack of inexpensive and efficient brain evaluation and screening systems. As a result, a considerable fraction of patients with neurocognitive or psychobehavioral predicaments either do not get timely diagnosed or fail to receive personalized treatment plans. This is especially true in the elderly populations, wherein only 16% of seniors say they receive regular cognitive evaluations. Therefore, there is a great need for development of an optimized clinical brain screening workflow methodology like what is already in existence for prostate and breast exams. Such a methodology should be designed to facilitate objective early detection and cost-effective treatment of such disorders. In this paper we have reviewed the existing clinical protocols, recent technological advances and suggested reliable clinical workflows for brain screening. Such protocols range from questionnaires and smartphone apps to multi-modality brain mapping and advanced imaging where applicable. To that end, the Society for Brain Mapping and Therapeutics (SBMT) proposes the Brain, Spine and Mental Health Screening (NEUROSCREEN) as a multi-faceted approach. Beside other assessment tools, NEUROSCREEN employs smartphone guided cognitive assessments and quantitative electroencephalography (qEEG) as well as potential genetic testing for cognitive decline risk as inexpensive and effective screening tools to facilitate objective diagnosis, monitor disease progression, and guide personalized treatment interventions. Operationalizing NEUROSCREEN is expected to result in reduced healthcare costs and improving quality of life at national and later, global scales.


Assuntos
COVID-19 , Pandemias , Idoso , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Atenção à Saúde , Humanos , Masculino , Qualidade de Vida
9.
Sci Rep ; 11(1): 19722, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611236

RESUMO

Transcranial direct current stimulation (tDCS) is among the rapidly growing experimental approaches to enhance athletic performance. Likewise, novel investigations have recently addressed the effects of transcutaneous spinal Direct Current Stimulation (tsDCS) on motor functions such as reduced reaction time. The impact of tDCS, and tsDCS might be attributed to altered spontaneous neural activity and membrane potentials of cortical and corticomotoneuronal cells, respectively. Given the paucity of empirical research in non-invasive brain stimulation in sports neuroscience, especially in boxing, the present investigation studied the effects of neuromodulation on motor and cognitive functions of professional boxers. The study sample comprised 14 experienced male boxers who received random sequential real or sham direct current stimulation over the primary motor cortex (M1) and paraspinal region (corresponding to the hand area) in two sessions with a 72-h interval. Unlike sham stimulation, real stimulation improved selective attention and reaction time of the experienced boxers [enhanced selective attention (p < 0.0003), diminished right hand (p < 0.0001) and left hand reaction time (p < 0.0006)]. Meanwhile, the intervention left no impact on the participants' cognitive functions (p > 0.05). We demonstrated that simultaneous stimulation of the spinal cord and M1 can improve the performance of experienced boxers through neuromodulation. The present study design may be extended to examine the role of neurostimulation in other sport fields.


Assuntos
Desempenho Atlético , Boxe , Medula Espinal/fisiologia , Estimulação Transcraniana por Corrente Contínua , Adulto , Atenção , Estudos de Casos e Controles , Cognição , Força da Mão , Hemodinâmica , Humanos , Memória de Curto Prazo , Tempo de Reação , Medula Espinal/irrigação sanguínea , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto Jovem
10.
Neurophysiol Clin ; 51(4): 319-328, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34088588

RESUMO

BACKGROUND: Around 40%-70% of patients with multiple sclerosis (MS) may experience cognitive impairments during the course of their disease with detrimental effects on social and occupational activities. Transcranial direct current stimulation (tDCS has been investigated in pain, fatigue, and mood disorders related to MS, but to date, few studies have examined effects of tDCS on cognitive performance in MS. OBJECTIVE: The current study aimed to investigate the effects of a multi-session tDCS protocol on cognitive performance and resting-state brain electrical activities in patients with MS. METHODS: Twenty-four eligible MS patients were randomly assigned to real (anodal) or sham tDCS groups. Before and after 8 consecutive daily tDCS sessions over the left dorsolateral prefrontal cortex (DLPFC), patients' cognitive performance was assessed using the Cambridge Brain Sciences-Cognitive Platform (CBS-CP). Cortical electrical activity was also evaluated using quantitative electroencephalography (QEEG) analysis at baseline and after the intervention. RESULTS: Compared to the sham condition, significant improvement in reasoning and executive functions of the patients in the real tDCS group was observed. Attention was also improved considerably but not statistically significantly following real tDCS. However, no significant changes in resting-state brain activities were observed after stimulation in either group. CONCLUSION: Anodal tDCS over the left DLPFC appears to be a promising therapeutic option for cognitive dysfunction in patients with MS. Larger studies are required to confirm these findings and to investigate underlying neuronal mechanisms.


Assuntos
Disfunção Cognitiva , Esclerose Múltipla , Estimulação Transcraniana por Corrente Contínua , Atenção , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/terapia , Humanos , Esclerose Múltipla/complicações , Esclerose Múltipla/terapia , Córtex Pré-Frontal
11.
Mater Sci Eng C Mater Biol Appl ; 122: 111898, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33641901

RESUMO

This research, for the first time, report the synthesis of core-shell magnetic nanoparticles (NPs) consisting poly acrylic acid (PAA) coated cobalt ferrite (CF) using a simple co-precipitation route. Nanocrystalline PAA@CF-NPs, particle size of 9.2 nm, exhibited saturation magnetization as 28.9 emu/g, remnant magnetization as 8.37 emu/g, and coercivity as 543 Oe. Keeping biomedical applications into consideration, PAA@CF-NPs were further analysed to evaluate antimicrobial performance against Gram positive (Staphylococcus aureus and Bacillus subtilis) and Gram negative (Pseudomonas aeruginosa and Escherichia coli) bacteria, and biocompatibility with reference to activated splenic cells. The PAA@CF-NPs were viable to the normal splenic cells (up to 1000 µg/ml) and do not affect the ability of fast dividing ability of the cells (activated splenic cells). An optimized dose of PAA@CF-NPs was intramuscularly administrated (100 µg/ml) into Albino mice to evaluate acute toxicity. The results of these studies suggest that injected PAA@CF-NPs do not affect vital organs mainly including liver and kidneys that confirmed the heptic/renal biocompatibility. The outcomes of this research project such developed nano-system for biomedical applications, mainly for magnetically guided drug delivery and image guided therapies development. However, to support the proposed claims, extended in-vivo studies are required to explore bio-distribution, chronic toxicity, and homeostatic conditions.


Assuntos
Anti-Infecciosos , Nanopartículas de Magnetita , Nanopartículas , Animais , Cobalto , Compostos Férricos , Nanopartículas de Magnetita/toxicidade , Camundongos , Tamanho da Partícula
13.
J Alzheimers Dis ; 77(2): 459-504, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32925078

RESUMO

COVID-19 is a severe infectious disease that has claimed >150,000 lives and infected millions in the United States thus far, especially the elderly population. Emerging evidence has shown the virus to cause hemorrhagic and immunologic responses, which impact all organs, including lungs, kidneys, and the brain, as well as extremities. SARS-CoV-2 also affects patients', families', and society's mental health at large. There is growing evidence of re-infection in some patients. The goal of this paper is to provide a comprehensive review of SARS-CoV-2-induced disease, its mechanism of infection, diagnostics, therapeutics, and treatment strategies, while also focusing on less attended aspects by previous studies, including nutritional support, psychological, and rehabilitation of the pandemic and its management. We performed a systematic review of >1,000 articles and included 425 references from online databases, including, PubMed, Google Scholar, and California Baptist University's library. COVID-19 patients go through acute respiratory distress syndrome, cytokine storm, acute hypercoagulable state, and autonomic dysfunction, which must be managed by a multidisciplinary team including nursing, nutrition, and rehabilitation. The elderly population and those who are suffering from Alzheimer's disease and dementia related illnesses seem to be at the higher risk. There are 28 vaccines under development, and new treatment strategies/protocols are being investigated. The future management for COVID-19 should include B-cell and T-cell immunotherapy in combination with emerging prophylaxis. The mental health and illness aspect of COVID-19 are among the most important side effects of this pandemic which requires a national plan for prevention, diagnosis and treatment.


Assuntos
Infecções por Coronavirus , Pandemias , Pneumonia Viral , COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/psicologia , Infecções por Coronavirus/terapia , Humanos , Imunoterapia , Saúde Mental , Apoio Nutricional , Pneumonia Viral/diagnóstico , Pneumonia Viral/epidemiologia , Pneumonia Viral/psicologia , Pneumonia Viral/terapia , Tratamento Farmacológico da COVID-19
14.
ACS Appl Bio Mater ; 3(11): 7306-7325, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-35019473

RESUMO

To manage the COVID-19 pandemic, development of rapid, selective, sensitive diagnostic systems for early stage ß-coronavirus severe acute respiratory syndrome (SARS-CoV-2) virus protein detection is emerging as a necessary response to generate the bioinformatics needed for efficient smart diagnostics, optimization of therapy, and investigation of therapies of higher efficacy. The urgent need for such diagnostic systems is recommended by experts in order to achieve the mass and targeted SARS-CoV-2 detection required to manage the COVID-19 pandemic through the understanding of infection progression and timely therapy decisions. To achieve these tasks, there is a scope for developing smart sensors to rapidly and selectively detect SARS-CoV-2 protein at the picomolar level. COVID-19 infection, due to human-to-human transmission, demands diagnostics at the point-of-care (POC) without the need of experienced labor and sophisticated laboratories. Keeping the above-mentioned considerations, we propose to explore the compartmentalization approach by designing and developing nanoenabled miniaturized electrochemical biosensors to detect SARS-CoV-2 virus at the site of the epidemic as the best way to manage the pandemic. Such COVID-19 diagnostics approach based on a POC sensing technology can be interfaced with the Internet of things and artificial intelligence (AI) techniques (such as machine learning and deep learning for diagnostics) for investigating useful informatics via data storage, sharing, and analytics. Keeping COVID-19 management related challenges and aspects under consideration, our work in this review presents a collective approach involving electrochemical SARS-CoV-2 biosensing supported by AI to generate the bioinformatics needed for early stage COVID-19 diagnosis, correlation of viral load with pathogenesis, understanding of pandemic progression, therapy optimization, POC diagnostics, and diseases management in a personalized manner.


Assuntos
Inteligência Artificial , COVID-19/terapia , Técnicas Eletroquímicas/métodos , Sistemas Automatizados de Assistência Junto ao Leito , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Pandemias , SARS-CoV-2/isolamento & purificação
16.
Sci Rep ; 7: 45663, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28374799

RESUMO

In this research, we demonstrate cell uptake of magneto-electric nanoparticles (MENPs) through nanoelectroporation (NEP) using alternating current (ac)-magnetic field stimulation. Uptake of MENPs was confirmed using focused-ion-beam assisted transmission electron microscopy (FIB-TEM) and validated by a numerical simulation model. The NEP was performed in microglial (MG) brain cells, which are highly sensitive for neuro-viral infection and were selected as target for nano-neuro-therapeutics. When the ac-magnetic field optimized (60 Oe at 1 kHz), MENPs were taken up by MG cells without affecting cell health (viability > 92%). FIB-TEM analysis of porated MG cells confirmed the non-agglomerated distribution of MENPs inside the cell and no loss of their elemental and crystalline characteristics. The presented NEP method can be adopted as a part of future nanotherapeutics and nanoneurosurgery strategies where a high uptake of a nanomedicine is required for effective and timely treatment of brain diseases.


Assuntos
Encéfalo/efeitos dos fármacos , Microglia/efeitos dos fármacos , Nanopartículas/química , Linhagem Celular , Portadores de Fármacos , Eletricidade , Eletroporação/métodos , Humanos , Campos Magnéticos , Microscopia Eletrônica de Transmissão/métodos , Nanomedicina/métodos
17.
Neurophotonics ; 4(1): 011010, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28042588

RESUMO

Advances in image-guided therapy enable physicians to obtain real-time information on neurological disorders such as brain tumors to improve resection accuracy. Image guidance data include the location, size, shape, type, and extent of tumors. Recent technological advances in neurophotonic engineering have enabled the development of techniques for minimally invasive neurosurgery. Incorporation of these methods in intraoperative imaging decreases surgical procedure time and allows neurosurgeons to find remaining or hidden tumor or epileptic lesions. This facilitates more complete resection and improved topology information for postsurgical therapy (i.e., radiation). We review the clinical application of recent advances in neurophotonic technologies including Raman spectroscopy, thermal imaging, optical coherence tomography, and fluorescence spectroscopy, highlighting the importance of these technologies in live intraoperative tissue mapping during neurosurgery. While these technologies need further validation in larger clinical trials, they show remarkable promise in their ability to help surgeons to better visualize the areas of abnormality and enable safe and successful removal of malignancies.

18.
PLoS One ; 8(4): e61819, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637912

RESUMO

Traumatic brain injury (TBI) is an enormous public health problem, with 1.7 million new cases of TBI recorded annually by the Centers for Disease Control. However, TBI has proven to be an extremely challenging condition to treat. Here, we apply a nanoprodrug strategy in a mouse model of TBI. The novel nanoprodrug contains a derivative of the nonsteroidal anti-inflammatory drug (NSAID) ibuprofen in an emulsion with the antioxidant α-tocopherol. The ibuprofen derivative, Ibu2TEG, contains a tetra ethylene glycol (TEG) spacer consisting of biodegradable ester bonds. The biodegradable ester bonds ensure that the prodrug molecules break down hydrolytically or enzymatically. The drug is labeled with the fluorescent reporter Cy5.5 using nonbiodegradable bonds to 1-octadecanethiol, allowing us to reliably track its accumulation in the brain after TBI. We delivered a moderate injury using a highly reproducible mouse model of closed-skull controlled cortical impact to the parietal region of the cortex, followed by an injection of the nanoprodrug at a dose of 0.2 mg per mouse. The blood brain barrier is known to exhibit increased permeability at the site of injury. We tested for accumulation of the fluorescent drug particles at the site of injury using confocal and bioluminescence imaging of whole brains and brain slices 36 hours after administration. We demonstrated that the drug does accumulate preferentially in the region of injured tissue, likely due to an enhanced permeability and retention (EPR) phenomenon. The use of a nanoprodrug approach to deliver therapeutics in TBI represents a promising potential therapeutic modality.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Lesões Encefálicas/metabolismo , Ibuprofeno/administração & dosagem , Pró-Fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Antioxidantes/química , Comportamento Animal , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/patologia , Modelos Animais de Doenças , Neuroimagem Funcional , Ibuprofeno/química , Ibuprofeno/metabolismo , Medições Luminescentes , Masculino , Aprendizagem em Labirinto , Camundongos , Pró-Fármacos/administração & dosagem , Pró-Fármacos/química , alfa-Tocoferol/química
19.
Int J Mol Med ; 29(6): 963-73, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22426741

RESUMO

The number of individuals suffering from stroke is increasing daily, and its consequences are a major contributor to invalidity in today's society. Stroke rehabilitation is relatively new, having been hampered from the longstanding view that lost functions were not recoverable. Nowadays, robotic devices, which aid by stimulating brain plasticity, can assist in restoring movement compromised by stroke-induced pathological changes in the brain which can be monitored by MRI. Multiparametric magnetic resonance imaging (MRI) of stroke patients participating in a training program with a novel Magnetic Resonance Compatible Hand-Induced Robotic Device (MR_CHIROD) could yield a promising biomarker that, ultimately, will enhance our ability to advance hand motor recovery following chronic stroke. Using state-of-the art MRI in conjunction with MR_CHIROD-assisted therapy can provide novel biomarkers for stroke patient rehabilitation extracted by a meta-analysis of data. Successful completion of such studies may provide a ground breaking method for the future evaluation of stroke rehabilitation therapies. Their results will attest to the effectiveness of using MR-compatible hand devices with MRI to provide accurate monitoring during rehabilitative therapy. Furthermore, such results may identify biomarkers of brain plasticity that can be monitored during stroke patient rehabilitation. The potential benefit for chronic stroke patients is that rehabilitation may become possible for a longer period of time after stroke than previously thought, unveiling motor skill improvements possible even after six months due to retained brain plasticity.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Medicina de Precisão , Robótica/instrumentação , Robótica/métodos , Reabilitação do Acidente Vascular Cerebral , Doença Crônica , Equipamentos e Provisões , Humanos , Acidente Vascular Cerebral/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...