Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(9): e202214495, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36453623

RESUMO

In a chemical equilibrium, the formation of high-energy species-in a closed system-is inefficient due to microscopic reversibility. Here, we demonstrate how this restriction can be circumvented by coupling a dynamic equilibrium to a light-induced E/Z isomerization of an azobenzene imine cage. The stable E-cage resists intermolecular imine exchange reactions that would "open" it. Upon switching, the strained Z-cage isomers undergo imine exchange spontaneously, thus opening the cage. Subsequent isomerization of the Z-open compounds yields a high-energy, kinetically trapped E-open species, which cannot be efficiently obtained from the initial E-cage, thus shifting an imine equilibrium energetically uphill in a closed system. Upon heating, the nucleophile is displaced back into solution and an opening/closing cycle is completed by regenerating the stable all-E-cage. Using this principle, a light-induced cage-to-cage transformation is performed by the addition of a ditopic aldehyde.

2.
Chem Sci ; 13(28): 8253-8264, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35919721

RESUMO

The incorporation of molecular machines into the backbone of porous framework structures will facilitate nano actuation, enhanced molecular transport, and other out-of-equilibrium host-guest phenomena in well-defined 3D solid materials. In this work, we detail the synthesis of a diamine-based light-driven molecular motor and its incorporation into a series of imine-based polymers and covalent organic frameworks (COF). We study structural and dynamic properties of the molecular building blocks and derived self-assembled solids with a series of spectroscopic, diffraction, and theoretical methods. Using an acid-catalyzed synthesis approach, we are able to obtain the first crystalline 2D COF with stacked hexagonal layers that contains 20 mol% molecular motors. The COF features a specific pore volume and surface area of up to 0.45 cm3 g-1 and 604 m2 g-1, respectively. Given the molecular structure and bulkiness of the diamine motor, we study the supramolecular assembly of the COF layers and detail stacking disorders between adjacent layers. We finally probe the motor dynamics with in situ spectroscopic techniques revealing current limitations in the analysis of these new materials and derive important analysis and design criteria as well as synthetic access to new generations of motorized porous framework materials.

3.
Angew Chem Int Ed Engl ; 61(34): e202205801, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35718745

RESUMO

In artificial small-molecule machines, molecular motors can be used to perform work on coupled systems by applying a mechanical load-such as strain-that allows for energy transduction. Here, we report how ring strain influences the rotation of a rotary molecular motor. Bridging the two halves of the motor with alkyl tethers of varying sizes yields macrocycles that constrain the motor's movement. Increasing the ring size by two methylene increments increases the mobility of the motor stepwise and allows for fine-tuning of strain in the system. Small macrocycles (8-14 methylene units) only undergo a photochemical E/Z isomerization. Larger macrocycles (16-22 methylene units) can perform a full rotational cycle, but thermal helix inversion is strongly dependent on the ring size. This study provides systematic and quantitative insight into the behavior of molecular motors under a mechanical load, paving the way for the development of complex coupled nanomachinery.


Assuntos
Rotação
5.
Nat Nanotechnol ; 17(2): 159-165, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34916655

RESUMO

Biological molecular machines enable chemical transformations, assembly, replication and motility, but most distinctively drive chemical systems out of-equilibrium to sustain life1,2. In such processes, nanometre-sized machines produce molecular energy carriers by driving endergonic equilibrium reactions. However, transforming the work performed by artificial nanomachines3-5 into chemical energy remains highly challenging. Here, we report a light-fuelled small-molecule ratchet capable of driving a coupled chemical equilibrium energetically uphill. By bridging two imine6-9 macrocycles with a molecular motor10,11, the machine forms crossings and consequently adopts several distinct topologies by either a thermal (temporary bond-dissociation) or photochemical (unidirectional rotation) pathway. While the former will relax the machine towards the global energetic minimum, the latter increases the number of crossings in the system above the equilibrium value. Our approach provides a blueprint for coupling continuous mechanical motion performed by a molecular machine with a chemical transformation to reach an out-of-equilibrium state.

6.
Angew Chem Int Ed Engl ; 58(7): 1945-1949, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30513134

RESUMO

The transfer of stereoinformation is at the heart of asymmetric reactions. By incorporating the natural monoterpene l-menthone into the backbone of a diarylethene, we achieved efficient chirality transfer upon photocyclization, resulting in the preferred formation of one major closed isomer in a diastereomeric ratio (d.r.) of 85:15. More significantly, we were able to completely reverse the diastereomeric outcome of the ring closure simply by altering the chemical environment or the irradiation conditions. As a result, we could selectively accumulate the less favored minor closed isomer, with remarkable d.r. values of >99:1 and 74:26, respectively. Computations revealed that a stability inversion after photocyclization is the basis for the observed unprecedented control over diastereoselectivity.

7.
Nat Chem ; 10(10): 1031-1036, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30104723

RESUMO

Bond formation between two molecular entities in a closed system strictly obeys the principle of microscopic reversibility and occurs in favour of the thermodynamically more stable product. Here, we demonstrate how light can bypass this fundamental limitation by driving and controlling the reversible bimolecular reaction between an N-nucleophile and a photoswitchable carbonyl electrophile. Light-driven tautomerization cycles reverse the reactivity of the C=O/C=N-electrophiles ('umpolung') to activate substrates and remove products, respectively, solely depending on the illumination wavelength. By applying either red or blue light, selective and nearly quantitative intermolecular bond formation/scission can be achieved, even if the underlying condensation/hydrolysis equilibrium is thermodynamically disfavoured. Exploiting light-driven in situ C=N exchange, our approach can be used to externally regulate a closed dynamic covalent system by actively and reversibly removing specific components, resembling a molecular and bidirectional version of a macroscopic Dean-Stark trap.

8.
Chem Soc Rev ; 46(18): 5536-5550, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28857096

RESUMO

In order to perform chemical work, molecular systems have to be operated away from thermodynamic equilibrium and therefore require the input of energy. Light is perhaps the most abundant and advantageous energy source that in combination with photoswitches allows for a reversible and hence continuous stimulation of a system. In this review, we illustrate how photoswitchable molecules can be used to escape the global thermodynamic minimum by populating metastable states, from which energy can be transferred and transformed in a controlled fashion. We emphasize the unique feature of photodynamic equilibria, in which population of the states is dictated by the excitation wavelength (and not primarily by temperature), thereby avoiding microscopic reversibility since the photoreaction involves an electronically excited state. Thus, photoswitchable molecular systems can remotely be controlled with high spatial and temporal resolution and in addition their action can be fueled by light.

9.
Angew Chem Int Ed Engl ; 55(44): 13882-13886, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27391109

RESUMO

Various aldehyde-containing photoswitches have been developed whose reactivity toward amines can be controlled externally. A thermally stable bifunctional diarylethene, which in its ring-closed form exhibits imine formation accelerated by one order of magnitude, was used as a photoswitchable crosslinker and mixed with a commercially available amino-functionalized polysiloxane to yield a rubbery material with viscoelastic and self-healing properties that can be reversibly tuned by irradiation.

10.
J Am Chem Soc ; 136(37): 13045-52, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25154039

RESUMO

We present the synthesis and characterization of enantiomerically pure [6]helicene o-quinones (P)-(+)-1 and (M)-(-)-1 and their application to chiroptical switching and chiral recognition. (P)-(+)-1 and (M)-(-)-1 each show a reversible one-electron reduction process in their cyclic voltammogram, which leads to the formation of the semiquinone radical anions (P)-(+)-1(•-) and (M)-(-)-1(•-), respectively. Spectroelectrochemical ECD measurements give evidence of the reversible switching between the two redox states, which is associated with large differences of the Cotton effects [Δ(Δε)] in the UV and visible regions. The reduction of (±)-1 by lithium metal provides [Li(+){(±)-1(•-)}], which was studied by EPR and ENDOR spectroscopy to reveal substantial delocalization of the spin density over the helicene backbone. DFT calculations demonstrate that the lithium hyperfine coupling A((7)Li) in [Li(+){(±)-1(•-)}] is very sensitive to the position of the lithium cation. On the basis of this observation, chiral recognition by ENDOR spectroscopy was achieved by complexation of [Li(+){(P)-(+)-1(•-)}] and [Li(+){(M)-(-)-1(•-)}] with an enantiomerically pure phosphine oxide ligand.

11.
Chem Commun (Camb) ; 48(50): 6298-300, 2012 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-22595996

RESUMO

A class of novel corannulene-derived ferrocene donor-acceptor systems has been synthesized by straight-forward Negishi-type coupling of iodocorannulene. Their solid state structures have been studied crystallographically and found to exhibit unique inter- and intramolecular slipped stacking interactions.


Assuntos
Compostos Ferrosos/síntese química , Nanofios/química , Compostos Organometálicos/química , Hidrocarbonetos Policíclicos Aromáticos/química , Compostos Ferrosos/química , Metalocenos , Modelos Moleculares , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...