Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(19): 11931-11944, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35521680

RESUMO

Two different approaches have been implemented to include the effect of dynamic electron correlation in the Non-Orthogonal Configuration Interaction for Fragments (NOCI-F) method. The first is based on shifting the diagonal matrix elements of the NOCI matrix, while the second incorporates the dynamic correlation explicitly in the fragment wave functions used to construct the many-electron basis functions of the NOCI. The two approaches are illustrated for the calculation of the electronic coupling relevant in singlet fission and the coupling of spin moments in organic radicals. Comparison of the calculated diabatic couplings, the NOCI energies and wave functions shows that dynamic electron correlation is not only efficiently but also effectively incorporated by the shifting approach and can largely affect the coupling between electronic states. Also, it brings the NOCI coupling of the spin moments in close agreement with benchmark calculations.

2.
J Comput Chem ; 42(5): 326-333, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33616968

RESUMO

For the search for promising singlet fission candidates, the calculation of the effective electronic coupling, which is required to estimate the singlet fission rate between the initially excited state (S0S1) and the multiexcitonic state (1TT, two triplets on neighboring molecules, coupled into a singlet), should be sufficiently reliable and fast enough to explore the configuration space. We propose here to modify the calculation of the effective electronic coupling using a nonorthogonal configuration interaction approach by: (a) using only one set of orbitals, optimized for the triplet state of the molecules, to describe all molecular electronic states, and (b) only taking the leading configurations into consideration. Furthermore, we also studied the basis set convergence of the electronic coupling, and we found, by comparison to the complete basis set limit obtained using the cc-pVnZ series of basis sets, that both the aug-cc-pVDZ and 6-311++G** basis sets are a good compromise between accuracy and computational feasibility. The proposed approach enables future work on larger clusters of molecules than dimers.

3.
J Chem Theory Comput ; 16(5): 2941-2951, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32279493

RESUMO

Electron and charge transfers are part of many vital processes in nature and technology. Ab initio descriptions of these processes provide useful insights that can be utilized for applications. A combination of the embedded cluster material model and nonorthogonal configuration interaction (NOCI), in which the cluster wave functions are expanded in many-electron basis functions (MEBFs) consisting of spin-adapted, antisymmetrized products of multiconfigurational wave functions of fragments (which are usually molecules) in the cluster, appears to provide a compromise between accuracy and calculation time. Additional advantages of this NOCI-Fragments approach are the chemically convenient interpretation of the wave function in terms of molecular states, and the direct accessibility of electronic coupling between diabatic states to describe energy and electron transfer processes. Bottlenecks in this method are the large number of two-electron integrals that have to be handled for the calculation of an electronic coupling matrix element and the enormous number of matrix elements over determinant pairs that have to be evaluated for the calculation of one matrix element between the MEBFs. We show here how we created a reduced common molecular orbital basis that is utilized to significantly reduce the number of two-electron integrals that need to be handled. The results obtained with this basis do not show any loss of accuracy in relevant quantities like electronic couplings and vertical excitation energies. We also show a significant reduction in computation time without loss in accuracy when matrix elements over determinant pairs with small weights are neglected in the NOCI. These improvements in the methodology render NOCI-Fragments to be also applicable to treat clusters of larger molecular systems with larger atomic basis sets and larger active spaces, as the computation time becomes dependent on the number of occupied orbitals and less dependent on the size of the active space.

4.
J Chem Phys ; 152(6): 064111, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32061226

RESUMO

GronOR is a program package for non-orthogonal configuration interaction calculations for an electronic wave function built in terms of anti-symmetrized products of multi-configuration molecular fragment wave functions. The two-electron integrals that have to be processed may be expressed in terms of atomic orbitals or in terms of an orbital basis determined from the molecular orbitals of the fragments. The code has been specifically designed for execution on distributed memory massively parallel and Graphics Processing Unit (GPU)-accelerated computer architectures, using an MPI+OpenACC/OpenMP programming approach. The task-based execution model used in the implementation allows for linear scaling with the number of nodes on the largest pre-exascale architectures available, provides hardware fault resiliency, and enables effective execution on systems with distinct central processing unit-only and GPU-accelerated partitions. The code interfaces with existing multi-configuration electronic structure codes that provide optimized molecular fragment orbitals, configuration interaction coefficients, and the required integrals. Algorithm and implementation details, parallel and accelerated performance benchmarks, and an analysis of the sensitivity of the accuracy of results and computational performance to thresholds used in the calculations are presented.

5.
J Am Chem Soc ; 141(44): 17729-17743, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31509712

RESUMO

A procedure is described for unbiased identification of all π-electron chromophore pair geometry choices that locally maximize the rate of conversion of a singlet exciton into a singlet biexciton (triplet pair), using a simplified version of the diabatic frontier orbital model of singlet fission (SF). The resulting approximate optimal geometries provide insight and are expected to represent useful starting points for searches by more advanced methods. The general procedure is illustrated on a pair of ethylenes as the simplest model of a π-electron system, but it is applicable to pairs of much larger molecules, with dozens of non-hydrogen atoms, and not necessarily planar. We first examine the value of |TA|2, the square of the electronic matrix element for SF with initial excitation fully localized on partner A, on a grid of several billion geometries within the six-dimensional space of physically realizable possibilities. Several of the optimized pair geometries are somewhat unexpected, but all are found to follow the qualitative guidance proposed earlier. In the neighborhood of each local maximum of |TA|2, consideration of mixing with charge-transfer configurations and of excitonic interaction between partners A and B determines the SF energy balance and yields squared matrix elements |T*|2 and |T**|2 for the lower and upper excitonic states S* and S**, respectively. Assuming Boltzmann populations of these states, the geometry is further optimized to maximize k, the sum of the SF rates obtained from Marcus theory, and this reorders the suitable geometries substantially. At 87 pair geometries, the |T*|2 and |T**|2 values are compared with those obtained from high-level ab initio nonorthogonal configuration interaction calculations and found to follow the same trend. Finally, the biexciton binding energy at the optimized geometries is calculated. Altogether, 13 significant local maxima of SF rate for a pair of ethylenes are identified in the physically relevant part of space that avoids molecular interpenetration in the hard-sphere approximation. The three best geometries are twist-stacked, slip-stacked, and L-shaped. The maxima occur at the (five-dimensional) surfaces of seven six-dimensional "parent" regions of space centered at physically inaccessible geometries at which the calculated SF rate is very large but the two ethylenes interpenetrate. The results are displayed in interactive graphics. The computer code ("Simple") written for these calculations is flexible in that it permits a choice of performing the search for local maxima in six dimensions on |TA|2, |T*|2, or k. It is available as freeware at https://cloud.uochb.cas.cz/simple .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...