Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5031, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097018

RESUMO

Species radiations, despite immense phenotypic variation, can be difficult to resolve phylogenetically when genetic change poorly matches the rapidity of diversification. Genomic potential furnished by palaeopolyploidy, and relative roles for adaptation, random drift and hybridisation in the apportionment of genetic variation, remain poorly understood factors. Here, we study these aspects in a model radiation, Syzygium, the most species-rich tree genus worldwide. Genomes of 182 distinct species and 58 unidentified taxa are compared against a chromosome-level reference genome of the sea apple, Syzygium grande. We show that while Syzygium shares an ancient genome doubling event with other Myrtales, little evidence exists for recent polyploidy events. Phylogenomics confirms that Syzygium originated in Australia-New Guinea and diversified in multiple migrations, eastward to the Pacific and westward to India and Africa, in bursts of speciation visible as poorly resolved branches on phylogenies. Furthermore, some sublineages demonstrate genomic clines that recapitulate cladogenetic events, suggesting that stepwise geographic speciation, a neutral process, has been important in Syzygium diversification.


Assuntos
Syzygium , Árvores , Especiação Genética , Genômica , Filogenia , Syzygium/genética
2.
Am J Bot ; 108(4): 628-646, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33745129

RESUMO

PREMISE: The woody plant group Memecylon (Melastomataceae) is a large clade occupying diverse forest habitats in the Old World tropics and exhibiting high regional endemism. Its phylogenetic relationships have been previously studied using ribosomal DNA with extensive sampling from Africa and Madagascar. However, divergence times, biogeography, and character evolution of Memecylon remain uninvestigated. We present a phylogenomic analysis of Memecylon to provide a broad evolutionary perspective of this clade. METHODS: One hundred supercontigs of 67 Memecylon taxa were harvested from target enrichment. The data were subjected to coalescent and concatenated phylogenetic analyses. A timeline was provided for Memecylon evolution using fossils and secondary calibration. The calibrated Memecylon phylogeny was used to elucidate its biogeography and ancestral character states. RESULTS: Relationships recovered by the phylogenomic analyses are strongly supported in both maximum likelihood and coalescent-based species trees. Memecylon is inferred to have originated in Africa in the Eocene and subsequently dispersed predominantly eastward via long-distance dispersal (LDD), although a reverse dispersal from South Asia westward to the Seychelles was postulated. Morphological data exhibited high levels of homoplasy, but also showed that several vegetative and reproductive characters were phylogenetically informative. CONCLUSIONS: The current distribution of Memecylon appears to be the result of multiple ancestral LDD events. Our results demonstrate the importance of the combined effect of geographic and paleoclimatic factors in shaping the distribution of this group in the Old World tropics. Memecylon includes a number of evolutionarily derived morphological features that contribute to diversity within the clade.


Assuntos
Melastomataceae , África , Ásia , Teorema de Bayes , Evolução Molecular , Madagáscar , Filogenia , Filogeografia
3.
Ecol Evol ; 11(24): 18196-18215, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35003667

RESUMO

Recent climate projections have shown that the distribution of organisms in island biotas is highly affected by climate change. Here, we present the result of the analysis of niche dynamics of a plant group, Memecylon, in Sri Lanka, an island, using species occurrences and climate data. We aim to determine which climate variables explain current distribution, model how climate change impacts the availability of suitable habitat for Memecylon, and determine conservation priority areas for Sri Lankan Memecylon. We used georeferenced occurrence data of Sri Lankan Memecylon to develop ecological niche models and assess both current and future potential distributions under six climate change scenarios in 2041-2060 and 2061-2080. We also overlaid land cover and protected area maps and performed a gap analysis to understand the impacts of land-cover changes on Memecylon distributions and propose new areas for conservation. Differences among suitable habitats of Memecylon were found to be related to patterns of endemism. Under varying future climate scenarios, endemic groups were predicted to experience habitat shifts, gains, or losses. The narrow endemic Memecylon restricted to the montane zone were predicted to be the most impacted by climate change. Projections also indicated that changes in species' habitats can be expected as early as 2041-2060. Gap analysis showed that while narrow endemic categories are considerably protected as demonstrated by their overlap with protected areas, more conservation efforts in Sri Lankan forests containing wide endemic and nonendemic Memecylon are needed. This research helped clarify general patterns of responses of Sri Lankan Memecylon to global climate change. Data from this study are useful for designing measures aimed at filling the gaps in forest conservation on this island.

4.
Asian Pac J Trop Med ; 7(10): 832-40, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25129470

RESUMO

OBJECTIVES: To do mapping and modeling of conformational B cell epitope regions of highly conserved and protective regions of three merozoitecandidate vaccine proteins of Plasmodium vivax (P. vivax), ie. merozoite purface protein-1 (PvMSP-1), apical membrane antigen -1 domain ∏ (PvAMA1-D∏) and region ∏ of the Duffy binding protein (PvDBP∏), and to analyze the immunogenic properties of these predicted epitopes. METHODS: 3-D structures of amino acid haplotypes from Sri Lanka (available in GeneBank) of PvMSP-119 (n=27), PvAMA1-D∏ (n=21) and PvDBP∏ (n=33) were modeled. SEPPA, selected as the best online server was used for conformational epitope predictions, while prediction and modeling of protein structure and properties related to immunogenicity was carried out with Geno3D server, SCRATCH Protein Server, NetSurfP Server and standalonesoftware, Genious 5.4.4. RESULTS: SEPPA revealed that regions of predicted conformational epitopes formed 4 clusters in PvMSP-I19, and 3 clusters each in PvAMA1-D∏ and PvDBP∏, all of which displayed a high degree of hydrophilicity, contained solvent exposed residues, displayed high probability of antigenicity and showed positive antigenic propensity values, that indicated high degree of immunogenicity. CONCLUSIONS: Findings of this study revealed and confirmed that different parts of the sequences of each of the conserved regions of the three selected potential vaccine candidate antigens of P. vivax are important with regard to conformational epitope prediction that warrants further laboratory experimental investigations in in vivo animal models.

5.
Am J Bot ; 93(4): 637-55, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21646224

RESUMO

Phylogenetic relationships within tribe Phyllantheae, the largest tribe of the family Phyllanthaceae, were examined with special emphasis on the large genus Phyllanthus. Nuclear ribosomal ITS and plastid matK DNA sequence data for 95 species of tribe Phyllantheae, including representatives of all subgenera of Phyllanthus (except Cyclanthera) and several hitherto unplaced infrageneric groups, were analyzed. Results for ITS and matK are generally concordant, although some species are placed differently in the plastid and ITS trees, indicating that hybridization/paralogy is involved. Results confirm paraphyly of Phyllanthus in its traditional circumscription with embedded Breynia, Glochidion, Reverchonia, and Sauropus. We favor the inclusion of the embedded taxa in Phyllanthus over further generic segregation. Monophyletic Phyllanthus comprises an estimated 1269 species, making it one of the "giant" genera. Phyllanthus maderaspatensis is sister to all other species of Phyllanthus, and the genus appears to be of paleotropical origin. Subgenera Isocladus, Kirganelia, and Phyllanthus are polyphyletic, whereas other subgenera appear to be monophyletic. Monotypic Reverchonia is sister to P. abnormis, arborescent section Emblica to herbaceous Urinaria, free-floating aquatic P. fluitans to the weed P. caroliniensis, and the phyllocladous section Choretropsis to the delicate leafy P. claussenii. The unique branching architecture known as "phyllanthoid branching" found in most Phyllanthus taxa has been lost (and/or has been derived) repeatedly. Taxonomic divisions within Phyllantheae based on similar pollen morphology are confirmed, and related taxa share similar distributions. We recommend recognition of six clades at generic level: Flueggea s.l. (including Richeriella), Lingelsheimia, Margaritaria, Phyllanthus s.l. (including Breynia, Glochidion, Reverchonia, and Sauropus), P. diandrus, and Savia section Heterosavia.

6.
Mol Phylogenet Evol ; 36(1): 112-34, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15904861

RESUMO

Phyllanthaceae are a pantropical family of c. 2000 species for which circumscription is believed to be coincident with subfamily Phyllanthoideae of Euphorbiaceae sensu lato (Malpighiales) excluding Putranjivaceae. A phylogenetic study of the family using DNA sequence data has delivered largely congruent results from the plastid atpB, matK, ndhF, rbcL, and the nuclear PHYC. Our analyses include sampling from 54 of 59 genera, representing all tribes and subtribes of Phyllanthoideae. The family falls into two major clades characterized by inflorescence and leaf anatomical features. Several traditional taxonomic groupings were retrieved with minor modifications, but most clades recovered are considerably different from previous non-molecular based ideas of relationships. The enigmatic genus Dicoelia and the geographically disjunct genus Lingelsheimia are shown to be embedded in Phyllanthaceae. The taxonomic status of Leptopus diplospermus (=Chorisandrachne) and the debated placement of Andrachne ovalis have been clarified, and Protomegabaria and Richeriella are newly placed. Paraphyly of Cleistanthus and Phyllanthus is confirmed, having three and four other genera embedded, respectively. Petalodiscus is also paraphyletic, including all other Malagassian Wielandieae.


Assuntos
Genes de Plantas , Magnoliopsida/classificação , Magnoliopsida/genética , Sequência de Bases , ATPases de Cloroplastos Translocadoras de Prótons/genética , DNA de Plantas/genética , Endorribonucleases/genética , Evolução Molecular , Magnoliopsida/anatomia & histologia , Dados de Sequência Molecular , NADH Desidrogenase/genética , Nucleotidiltransferases/genética , Filogenia , Fitocromo/genética , Proteínas de Plantas/genética , Plastídeos/genética , Ribulose-Bifosfato Carboxilase/genética , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Terminologia como Assunto
7.
Am J Bot ; 92(1): 132-41, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21652393

RESUMO

Plastid matK and a fragment of the low-copy nuclear gene PHYC were sequenced for 30 genera of Phyllanthaceae to evaluate tribal and generic delimitation. Resolution and bootstrap percentages obtained with matK are higher than that of PHYC, but both regions show nearly identical phylogenetic patterns. Phylogenetic relationships inferred from the independent and combined data are congruent and differ from previous, morphology-based classifications but are highly concordant with those of the plastid gene rbcL previously published. Phyllanthaceae is monophyletic and gives rise to two well-resolved clades (T and F) that could be recognized as subfamilies. DNA sequence data for Keayodendron and Zimmermanniopsis are presented for the first time. Keayodendron is misplaced in tribe Phyllantheae and belongs to the Bridelia alliance. Zimmermanniopsis is sister to Zimmermannia. Phyllanthus and Cleistanthus are paraphyletic. Savia and Phyllanthus subgenus Kirganelia are not monophyletic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...