Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-443404

RESUMO

Subunit vaccines based on the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2, are among the most promising strategies to fight the COVID-19 pandemic. The detailed characterization of the protein primary structure by mass spectrometry (MS) is mandatory, as described in ICHQ6B guidelines. In this work, several recombinant RBD proteins produced in five expression systems were characterized using a non-conventional protocol known as in-solution buffer-free digestion (BFD). In a single ESI-MS spectrum, BFD allowed very high sequence coverage ([≥] 99 %) and the detection of highly hydrophilic regions, including very short and hydrophilic peptides (2-8 amino acids), the His6-tagged C-terminal peptide carrying several post-translational modifications at Cys538 such as cysteinylation, glutathionylation, cyanilation, among others. The analysis using the conventional digestion protocol allowed lower sequence coverage (80-90 %) and did not detect peptides carrying some of the above-mentioned post-translational modifications. The two C-terminal peptides of a dimer [RBD(319-541)-(His)6]2 linked by an intermolecular disulfide bond (Cys538-Cys538) with twelve histidine residues were only detected by BFD. This protocol allows the detection of the four disulfide bonds present in the native RBD and the low-abundance scrambling variants, free cysteine residues, O-glycoforms and incomplete processing of the N-terminal end, if present. Artifacts that might be generated by the in-solution BFD protocol were also characterized. BFD can be easily implemented and we foresee that it can be also helpful to the characterization of mutated RBD.

2.
Vaccine ; 33(35): 4292-9, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26003492

RESUMO

Vaccine preparations based on the extracellular domain of Her1 (Her1-ECD) have demonstrated, in vitro and in vivo, a potent antimetastatic effect on EGFR(+) Lewis lung carcinoma model, while associated side effects were absent. The Her1-ECD is a glycoprotein with a molecular weight of 105 kDa and has 11 potential sites for N-glycosylation. Currently Her1-ECD based vaccine has been evaluated in patients with hormone refractory prostate cancer. Her1-ECD molecule used for in clinical trials was obtained from culture supernatant of HEK 293 transfectomes used the protein free culture media and is purified by immunoaffinity chromatography. In order to increase the cell growth and productivity, new defined culture media have been developed (alternative culture media) in Her1-ECD vaccine production process. In this work, a comparability study was performed to evaluate the impact of process changes in the characteristics physic-chemical and biologicals of the Her1-ECD protein and the degree of similitude between both variants. Techniques such as: SDS-PAGE, SEC-HPLC, isoelectric point, peptide mapping, mass spectrometric, SCX-HPLC, oligosaccharide map, ELISA and flow cytometric were used with this aim. Results indicated that this process change decreases the degree of sialylation of the protein but does not affect its biological activity (measured as titers of Abs and recognition for A431 cell line).


Assuntos
Vacinas Anticâncer/normas , Receptores ErbB/química , Receptores ErbB/imunologia , Neoplasias da Próstata/imunologia , Animais , Vacinas Anticâncer/imunologia , Carcinoma Pulmonar de Lewis , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Células HEK293 , Humanos , Masculino , Estrutura Terciária de Proteína , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...