Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 379(6634): 815-820, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36821693

RESUMO

Pyrocumulonimbus (pyroCb) are wildfire-generated convective clouds that can inject smoke directly into the stratosphere. PyroCb have been tracked for years, yet their apparent rarity and episodic nature lead to highly uncertain climate impacts. In situ measurements of pyroCb smoke reveal its distinctive and exceptionally stable aerosol properties and define the long-term influence of pyroCb activity on the stratospheric aerosol budget. Analysis of 13 years of airborne observations shows that pyroCb are responsible for 10 to 25% of the black carbon and organic aerosols in the "present-day" lower stratosphere, with similar impacts in both the North and South Hemispheres. These results suggest that, should pyroCb increase in frequency and/or magnitude in future climates, they could generate dominant trends in stratospheric aerosol.

2.
J Geophys Res Atmos ; 126(24): e2021JD035692, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35865864

RESUMO

Accurate fire emissions inventories are crucial to predict the impacts of wildland fires on air quality and atmospheric composition. Two traditional approaches are widely used to calculate fire emissions: a satellite-based top-down approach and a fuels-based bottom-up approach. However, these methods often considerably disagree on the amount of particulate mass emitted from fires. Previously available observational datasets tended to be sparse, and lacked the statistics needed to resolve these methodological discrepancies. Here, we leverage the extensive and comprehensive airborne in situ and remote sensing measurements of smoke plumes from the recent Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign to statistically assess the skill of the two traditional approaches. We use detailed campaign observations to calculate and compare emission rates at an exceptionally high-resolution using three separate approaches: top-down, bottom-up, and a novel approach based entirely on integrated airborne in situ measurements. We then compute the daily average of these high-resolution estimates and compare with estimates from lower resolution, global top-down and bottom-up inventories. We uncover strong, linear relationships between all of the high-resolution emission rate estimates in aggregate, however no single approach is capable of capturing the emission characteristics of every fire. Global inventory emission rate estimates exhibited weaker correlations with the high-resolution approaches and displayed evidence of systematic bias. The disparity between the low-resolution global inventories and the high-resolution approaches is likely caused by high levels of uncertainty in essential variables used in bottom-up inventories and imperfect assumptions in top-down inventories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...