Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(44): eabm3291, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36332027

RESUMO

Functional restoration following major peripheral nerve injury (PNI) is challenging, given slow axon growth rates and eventual regenerative pathway degradation in the absence of axons. We are developing tissue-engineered nerve grafts (TENGs) to simultaneously "bridge" missing nerve segments and "babysit" regenerative capacity by providing living axons to guide host axons and maintain the distal pathway. TENGs were biofabricated using porcine neurons and "stretch-grown" axon tracts. TENG neurons survived and elicited axon-facilitated axon regeneration to accelerate regrowth across both short (1 cm) and long (5 cm) segmental nerve defects in pigs. TENG axons also closely interacted with host Schwann cells to maintain proregenerative capacity. TENGs drove regeneration across 5-cm defects in both motor and mixed motor-sensory nerves, resulting in dense axon regeneration and electrophysiological recovery at levels similar to autograft repairs. This approach of accelerating axon regeneration while maintaining the pathway for long-distance regeneration may achieve recovery after currently unrepairable PNIs.

2.
Bioact Mater ; 18: 339-353, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35415305

RESUMO

Nerve injury requiring surgical repair often results in poor functional recovery due to the inability of host axons to re-grow long distances and reform meaningful connections with the target muscle. While surgeons can re-route local axon fascicles to the target muscle, there are no technologies to provide an exogenous source of axons without sacrificing healthy nerves. Accordingly, we have developed tissue engineered neuromuscular interfaces (TE-NMIs) as the first injectable microtissue containing motor and sensory neurons in an anatomically-inspired architecture. TE-NMIs provide axon tracts that are intended to integrate with denervated distal structures and preserve regenerative capacity during prolonged periods without host innervation. Following implant, we found that TE-NMI axons promoted Schwann cell maintenance, integrated with distal muscle, and preserved an evoked muscle response out to 20-weeks post nerve transection in absence of innervation from host axons. By repopulating the distal sheath with exogenous axons, TE-NMIs also enabled putative delayed fusion with proximal host axons, a phenomenon previously not achievable in delayed repair scenarios due to distal axon degeneration. Here, we found immediate electrophysiological recovery after fusion with proximal host axons and improved axon maturation and muscle reinnervation at 24-weeks post-transection (4-weeks following delayed nerve fusion). These findings show that TE-NMIs provide the potential to improve functional recovery following delayed nerve repair.

3.
J Tissue Eng ; 12: 20417314211032488, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394908

RESUMO

Tissue engineered nerve grafts (TENGs) built from living neurons and aligned axon tracts offer a revolutionary new approach as "living scaffolds" to bridge major peripheral nerve defects. Clinical application, however, necessitates sufficient shelf-life to allow for shipping from manufacturing facility to clinic as well as storage until use. Here, hypothermic storage in commercially available hibernation media is explored as a potential biopreservation strategy for TENGs. After up to 28 days of refrigeration at 4℃, TENGs maintain viability and structure in vitro. Following transplantation into 1 cm rat sciatic defects, biopreserved TENGs routinely survive and persist for at least 2 weeks and recapitulate pro-regenerative mechanisms of fresh TENGs, including the ability to recruit regenerating host tissue into the graft and extend neurites beyond the margins of the graft. The protocols and timelines established here serve as important foundational work for the manufacturing, storage, and translation of other neuron-based tissue engineered therapeutics.

4.
Tissue Eng Part A ; 27(19-20): 1305-1320, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33514288

RESUMO

Existing strategies for repair of major peripheral nerve injury (PNI) are inefficient at promoting axon regeneration and functional recovery and are generally ineffective for nerve lesions >5 cm. To address this need, we have previously developed tissue engineered nerve grafts (TENGs) through the process of axon stretch growth. TENGs consist of living, centimeter-scale, aligned axon tracts that accelerate axon regeneration at rates equivalent to the gold standard autograft in small and large animal models of PNI, by providing a newfound mechanism-of-action referred to as axon-facilitated axon regeneration (AFAR). To enable clinical-grade biomanufacturing of TENGs, a suitable cell source that is hypoimmunogenic, exhibits low batch-to-batch variability, and able to tolerate axon stretch growth must be utilized. To fulfill these requirements, a genetically engineered, FDA-approved, xenogeneic cell source, GalSafe® neurons, produced by Revivicor, Inc., have been selected to advance TENG biofabrication for eventual clinical use. To this end, sensory and motor neurons were harvested from genetically engineered GalSafe day 40 swine embryos, cultured in custom mechanobioreactors, and axon tracts were successfully stretch-grown to 5 cm within 25 days. Importantly, both sensory and motor GalSafe neurons were observed to tolerate established axon stretch growth regimes of ≥1 mm/day to produce continuous, healthy axon tracts spanning 1, 3, or 5 cm. Once stretch-grown, 1 cm GalSafe TENGs were transplanted into a 1 cm lesion in the sciatic nerve of athymic rats. Regeneration was assessed through histological measures at the terminal time point of 2 and 8 weeks. Neurons from GalSafe TENGs survived and elicited AFAR as observed when using wild-type TENGs. At 8 weeks postrepair, myelinated regenerated axons were observed in the nerve section distal to the injury site, confirming axon regeneration across the lesion. These experiments are the first to demonstrate successful harvest and axon stretch growth of GalSafe neurons for use as starting biomass for bioengineered nerve grafts as well as initial safety and efficacy in an established preclinical model-important steps for the advancement of clinical-grade TENGs for future regulatory testing and eventual clinical trials. Impact statement Biofabrication of tissue engineered medical products requires several steps, one of which is choosing a suitable starting biomass. To this end, we have shown that the clinical-grade, genetically engineered biomass-GalSafe® neurons-is a viable option for biomanufacturing of our tissue engineered nerve grafts (TENGs) to promote regeneration following major peripheral nerve injury. Importantly, this is a first step in clinical-grade TENG biofabrication, proving that GalSafe TENGs recapitulate the mechanism of axon-facilitated axon regeneration seen previously with research-grade TENGs.


Assuntos
Axônios , Regeneração Nervosa , Animais , Neurônios Motores , Bainha de Mielina , Ratos , Nervo Isquiático , Suínos
5.
J Tissue Eng Regen Med ; 14(12): 1892-1907, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33049797

RESUMO

Peripheral nerve injury (PNI) impacts millions annually, often leaving debilitated patients with minimal repair options to improve functional recovery. Our group has previously developed tissue engineered nerve grafts (TENGs) featuring long, aligned axonal tracts from dorsal root ganglia (DRG) neurons that are fabricated in custom bioreactors using the process of axon "stretch-growth." We have shown that TENGs effectively serve as "living scaffolds" to promote regeneration across segmental nerve defects by exploiting the newfound mechanism of axon-facilitated axon regeneration, or "AFAR," by simultaneously providing haptic and neurotrophic support. To extend this work, the current study investigated the efficacy of living versus nonliving regenerative scaffolds in preserving host sensory and motor neuronal health following nerve repair. Rats were assigned across five groups: naïve, or repair using autograft, nerve guidance tube (NGT) with collagen, NGT + non-aligned DRG populations in collagen, or TENGs. We found that TENG repairs yielded equivalent regenerative capacity as autograft repairs based on preserved health of host spinal cord motor neurons and acute axonal regeneration, whereas NGT repairs or DRG neurons within an NGT exhibited reduced motor neuron preservation and diminished regenerative capacity. These acute regenerative benefits ultimately resulted in enhanced levels of functional recovery in animals receiving TENGs, at levels matching those attained by autografts. Our findings indicate that TENGs may preserve host spinal cord motor neuron health and regenerative capacity without sacrificing an otherwise uninjured nerve (as in the case of the autograft) and therefore represent a promising alternative strategy for neurosurgical repair following PNI.


Assuntos
Axônios/fisiologia , Neurônios Motores/patologia , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Medula Espinal/patologia , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Sobrevivência Celular , Traumatismos dos Nervos Periféricos/patologia , Ratos Sprague-Dawley , Células de Schwann/patologia , Corno Ventral da Medula Espinal/patologia , Coloração e Rotulagem
6.
Artigo em Inglês | MEDLINE | ID: mdl-32523945

RESUMO

Strategies to accelerate the rate of axon regeneration would improve functional recovery following peripheral nerve injury, in particular for cases involving segmental nerve defects. We are advancing tissue engineered nerve grafts (TENGs) comprised of long, aligned, centimeter-scale axon tracts developed by the controlled process of axon "stretch-growth" in custom mechanobioreactors. The current study used a rat sciatic nerve model to investigate the mechanisms of axon regeneration across nerve gaps bridged by TENGs as well as the extent of functional recovery compared to nerve guidance tubes (NGT) or autografts. We established that host axon growth occurred directly along TENG axons, which mimicked the action of "pioneer" axons during development by providing directed cues for accelerated outgrowth. Indeed, axon regeneration rates across TENGs were 3-4 fold faster than NGTs and equivalent to autografts. The infiltration of host Schwann cells - traditional drivers of peripheral axon regeneration - was also accelerated and progressed directly along TENG axons. Moreover, TENG repairs resulted in functional recovery levels equivalent to autografts, with both several-fold superior to NGTs. These findings demonstrate that engineered axon tracts serve as "living scaffolds" to guide host axon outgrowth by a new mechanism - which we term "axon-facilitated axon regeneration" - that leads to enhanced functional recovery.

7.
J Tissue Eng Regen Med ; 13(11): 2040-2054, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31469944

RESUMO

The central feature of peripheral motor axons is their remarkable lengths as they project from a motor neuron residing in the spinal cord to distant target muscle. However, current in vitro models have not replicated this feature owing to challenges in generating motor axon tracts beyond a few millimeters in length. To address this, we have developed a novel combination of microtissue engineering and mechanically assisted growth techniques to create long-projecting centimeter-scale motor axon tracts. Here, primary motor neurons were isolated from rat spinal cords and induced to form engineered microspheres via forced aggregation in custom microwells. This technique yielded healthy motor neurons projecting dense, fasciculated axonal tracts. Within our custom-built mechanobioreactors, motor neuron culture conditions, neuronal/axonal architecture, and mechanical growth conditions were optimized to generate parameters for robust and efficient stretch growth of motor axons. We found that axons projecting from motor neuron aggregates were able to tolerate displacement rates at least 10 times greater than those by axons projecting from dissociated motor neurons. The growth and structural characteristics of these stretch-grown motor axons were compared with that of benchmark stretch-grown sensory axons, revealing increased motor axon fasciculation. Finally, motor axons were integrated with myocytes and stretch grown to create novel long-projecting axonal-myocyte constructs that recreate characteristic dimensions of native nerve-muscle anatomy. This is the first demonstration of mechanical elongation of spinal motor axons and may have applications as anatomically inspired in vitro testbeds or as tissue-engineered living scaffolds for targeted axon tract reconstruction following nervous system injury or disease.


Assuntos
Axônios/metabolismo , Reatores Biológicos , Neurônios Motores/metabolismo , Animais , Neurônios Motores/citologia , Ratos , Ratos Sprague-Dawley
8.
Neural Regen Res ; 13(8): 1327-1331, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30106034

RESUMO

New neurons are integrated into the circuitry of the olfactory bulb throughout the lifespan in the mammalian brain-including in humans. These new neurons are born in the subventricular zone and subsequently mature as they are guided over long distances via the rostral migratory stream through mechanisms we are only just beginning to understand. Regeneration after brain injury is very limited, and although some neuroblasts from the rostral migratory stream will leave the path and migrate toward cortical lesion sites, this neuronal replacement is generally not sustained and therefore does not provide enough new neurons to alleviate functional deficits. Using newly discovered microtissue engineering techniques, we have built the first self-contained, implantable constructs that mimic the architecture and function of the rostral migratory stream. This engineered microtissue emulates the dense cord-like bundles of astrocytic somata and processes that are the hallmark anatomical feature of the glial tube. As such, our living microtissue-engineered rostral migratory stream can serve as an in vitro test bed for unlocking the secrets of neuroblast migration and maturation, and may potentially serve as a living transplantable construct derived from a patient's own cells that can redirect their own neuroblasts into lesion sites for sustained neuronal replacement following brain injury or neurodegenerative disease. In this paper, we summarize the development of fabrication methods for this microtissue-engineered rostral migratory stream and provide proof-of-principle evidence that it promotes and directs migration of immature neurons.

9.
J Vis Exp ; (131)2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29364269

RESUMO

Neurotrauma and neurodegenerative disease often result in lasting neurological deficits due to the limited capacity of the central nervous system (CNS) to replace lost neurons and regenerate axonal pathways. However, during nervous system development, neuronal migration and axonal extension often occur along pathways formed by other cells, referred to as "living scaffolds". Seeking to emulate these mechanisms and to design a strategy that circumvents the inhibitory environment of the CNS, this manuscript presents a protocol to fabricate tissue engineered astrocyte-based "living scaffolds". To create these constructs, we employed a novel biomaterial encasement scheme to induce astrocytes to self-assemble into dense three-dimensional bundles of bipolar longitudinally-aligned somata and processes. First, hollow hydrogel micro-columns were assembled, and the inner lumen was coated with collagen extracellular-matrix. Dissociated cerebral cortical astrocytes were then delivered into the lumen of the cylindrical micro-column and, at a critical inner diameter of <350 µm, spontaneously self-aligned and contracted to produce long fiber-like cables consisting of dense bundles of astrocyte processes and collagen fibrils measuring <150 µm in diameter yet extending several cm in length. These engineered living scaffolds exhibited >97% cell viability and were virtually exclusively comprised of astrocytes expressing a combination of the intermediate filament proteins glial-fibrillary acidic protein (GFAP), vimentin, and nestin. These aligned astrocyte networks were found to provide a permissive substrate for neuronal attachment and aligned neurite extension. Moreover, these constructs maintain integrity and alignment when extracted from the hydrogel encasement, making them suitable for CNS implantation. These preformed constructs structurally emulate key cytoarchitectural elements of naturally occurring glial-based "living scaffolds" in vivo. As such, these engineered living scaffolds may serve as test-beds to study neurodevelopmental mechanisms in vitro or facilitate neuroregeneration by directing neuronal migration and/or axonal pathfinding following CNS degeneration in vivo.


Assuntos
Astrócitos/fisiologia , Regeneração Nervosa/fisiologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Movimento Celular/fisiologia , Células Cultivadas , Sistema Nervoso Central/citologia , Sistema Nervoso Central/fisiologia , Humanos
10.
J Vis Exp ; (123)2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28605376

RESUMO

Functional recovery rarely occurs following injury or disease-induced degeneration within the central nervous system (CNS) due to the inhibitory environment and the limited capacity for neurogenesis. We are developing a strategy to simultaneously address neuronal and axonal pathway loss within the damaged CNS. This manuscript presents the fabrication protocol for micro-tissue engineered neural networks (micro-TENNs), implantable constructs consisting of neurons and aligned axonal tracts spanning the extracellular matrix (ECM) lumen of a preformed hydrogel cylinder hundreds of microns in diameter that may extend centimeters in length. Neuronal aggregates are delimited to the extremes of the three-dimensional encasement and are spanned by axonal projections. Micro-TENNs are uniquely poised as a strategy for CNS reconstruction, emulating aspects of brain connectome cytoarchitecture and potentially providing means for network replacement. The neuronal aggregates may synapse with host tissue to form new functional relays to restore and/or modulate missing or damaged circuitry. These constructs may also act as pro-regenerative "living scaffolds" capable of exploiting developmental mechanisms for cell migration and axonal pathfinding, providing synergistic structural and soluble cues based on the state of regeneration. Micro-TENNs are fabricated by pouring liquid hydrogel into a cylindrical mold containing a longitudinally centered needle. Once the hydrogel has gelled, the needle is removed, leaving a hollow micro-column. An ECM solution is added to the lumen to provide an environment suitable for neuronal adhesion and axonal outgrowth. Dissociated neurons are mechanically aggregated for precise seeding within one or both ends of the micro-column. This methodology reliably produces self-contained miniature constructs with long-projecting axonal tracts that may recapitulate features of brain neuroanatomy. Synaptic immunolabeling and genetically encoded calcium indicators suggest that micro-TENNs possess extensive synaptic distribution and intrinsic electrical activity. Consequently, micro-TENNs represent a promising strategy for targeted neurosurgical reconstruction of brain pathways and may also be applied as biofidelic models to study neurobiological phenomena in vitro.


Assuntos
Encéfalo/citologia , Rede Nervosa/citologia , Regeneração Nervosa , Engenharia Tecidual/métodos , Animais , Axônios/fisiologia , Agregação Celular , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Ratos
11.
J Tissue Eng Regen Med ; 11(10): 2737-2751, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27273796

RESUMO

Following brain injury or neurodegenerative disease, successful regeneration requires orchestrated migration of neurons and reformation of long-distance communication fibres, or axons. Such extensive regeneration does not occur in the mature brain; however, during embryonic development, pathways formed by glial cells extend several millimeters (mm) to create 'living scaffolds' for targeted neural cell migration and axonal pathfinding. Techniques to recapitulate long process outgrowth in glial cells have proven elusive, preventing the exploitation of this developmental mechanism for regeneration. In the current study, astrocytes were induced to form a network of interconnected processes that were subjected to controlled mechanical tension in vitro using custom-built mechanobioreactors. We discovered a specific micron (µm)-scale mechanical growth regime that induced elongation of the astrocytic processes to a remarkable length of 2.5 mm at an optimal rate of 12.5 µm/h. More rapid mechanical regimes (> 20 µm/h) caused greater incidence of process degeneration or outright breakage, whereas slow regimes (< 4 µm/h) led to adaptive motility, thus failing to achieve process elongation. Cellular phenotype for this astrocytic 'stretch-growth' was confirmed based on presentation of the intermediate filament glial fibrillary acidic protein (GFAP). Mechanical elongation resulted in the formation of dense bundles of aligned astrocytic processes. Importantly, seeded neurons readily adhered to, and extended neurites directly along, the elongated astrocytic processes, demonstrating permissiveness to support neuronal growth. This is the first demonstration of the controlled application of mechanical forces to create long astrocytic processes, which may form the backbone of tissue-engineered 'living scaffolds' that structurally emulate radial glia to facilitate neuroregeneration. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Astrócitos/citologia , Fenômenos Mecânicos , Regeneração Nervosa/fisiologia , Alicerces Teciduais/química , Animais , Astrócitos/metabolismo , Diferenciação Celular , Forma Celular , Sobrevivência Celular , Meios de Cultura , Proteína Glial Fibrilar Ácida/metabolismo , Neuritos/metabolismo , Ratos Sprague-Dawley , Engenharia Tecidual
12.
Acta Biomater ; 38: 44-58, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27090594

RESUMO

UNLABELLED: Neurotrauma, stroke, and neurodegenerative disease may result in widespread loss of neural cells as well as the complex interconnectivity necessary for proper central nervous system function, generally resulting in permanent functional deficits. Potential regenerative strategies involve the recruitment of endogenous neural stem cells and/or directed axonal regeneration through the use of tissue engineered "living scaffolds" built to mimic features of three-dimensional (3-D) in vivo migratory or guidance pathways. Accordingly, we devised a novel biomaterial encasement scheme using tubular hydrogel-collagen micro-columns that facilitated the self-assembly of seeded astrocytes into 3-D living scaffolds consisting of long, cable-like aligned astrocytic networks. Here, robust astrocyte alignment was achieved within a micro-column inner diameter (ID) of 180µm or 300-350µm but not 1.0mm, suggesting that radius of curvature dictated the extent of alignment. Moreover, within small ID micro-columns, >70% of the astrocytes assumed a bi-polar morphology, versus ∼10% in larger micro-columns or planar surfaces. Cell-cell interactions also influenced the aligned architecture, as extensive astrocyte-collagen contraction was achieved at high (9-12×10(5)cells/mL) but not lower (2-6×10(5)cells/mL) seeding densities. This high density micro-column seeding led to the formation of ultra-dense 3-D "bundles" of aligned bi-polar astrocytes within collagen measuring up to 150µm in diameter yet extending to a remarkable length of over 2.5cm. Importantly, co-seeded neurons extended neurites directly along the aligned astrocytic bundles, demonstrating permissive cues for neurite extension. These transplantable cable-like astrocytic networks structurally mimic the glial tube that guides neuronal progenitor migration in vivo along the rostral migratory stream, and therefore may be useful to guide progenitor cells to repopulate sites of widespread neurodegeneration. STATEMENT OF SIGNIFICANCE: This manuscript details our development of novel micro-tissue engineering techniques to generate robust networks of longitudinally aligned astrocytes within transplantable micro-column hydrogels. We report a novel biomaterial encasement scheme that facilitated the self-assembly of seeded astrocytes into long, aligned regenerative pathways. These miniature "living scaffold" constructs physically emulate the glial tube - a pathway in the brain consisting of aligned astrocytes that guide the migration of neuronal progenitor cells - and therefore may facilitate directed neuronal migration for central nervous system repair. The small size and self-contained design of these aligned astrocyte constructs will permit minimally invasive transplantation in models of central nervous system injury in future studies.


Assuntos
Astrócitos/transplante , Sistema Nervoso Central , Implantes Experimentais , Regeneração , Engenharia Tecidual , Alicerces Teciduais , Animais , Sistema Nervoso Central/lesões , Sistema Nervoso Central/fisiologia , Ratos , Ratos Sprague-Dawley
13.
Neural Regen Res ; 10(5): 679-85, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26109930

RESUMO

Neural tissue engineering is premised on the integration of engineered living tissue with the host nervous system to directly restore lost function or to augment regenerative capacity following nervous system injury or neurodegenerative disease. Disconnection of axon pathways - the long-distance fibers connecting specialized regions of the central nervous system or relaying peripheral signals - is a common feature of many neurological disorders and injury. However, functional axonal regeneration rarely occurs due to extreme distances to targets, absence of directed guidance, and the presence of inhibitory factors in the central nervous system, resulting in devastating effects on cognitive and sensorimotor function. To address this need, we are pursuing multiple strategies using tissue engineered "living scaffolds", which are preformed three-dimensional constructs consisting of living neural cells in a defined, often anisotropic architecture. Living scaffolds are designed to restore function by serving as a living labeled pathway for targeted axonal regeneration - mimicking key developmental mechanisms- or by restoring lost neural circuitry via direct replacement of neurons and axonal tracts. We are currently utilizing preformed living scaffolds consisting of neuronal clusters spanned by long axonal tracts as regenerative bridges to facilitate long-distance axonal regeneration and for targeted neurosurgical reconstruction of local circuits in the brain. Although there are formidable challenges in preclinical and clinical advancement, these living tissue engineered constructs represent a promising strategy to facilitate nervous system repair and functional recovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...