Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(8)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37626712

RESUMO

Multiple studies have demonstrated the importance of androgen receptor (AR) splice variants (SVs) in the progression of prostate cancer to the castration-resistant phenotype and their utility as a diagnostic. However, studies on AR expression in non-prostatic malignancies uncovered that AR-SVs are expressed in glioblastoma, breast, salivary, bladder, kidney, and liver cancers, where they have diverse roles in tumorigenesis. AR-SVs also have roles in non-cancer pathologies. In granulosa cells from women with polycystic ovarian syndrome, unique AR-SVs lead to an increase in androgen production. In patients with nonobstructive azoospermia, testicular Sertoli cells exhibit differential expression of AR-SVs, which is associated with impaired spermatogenesis. Moreover, AR-SVs have been identified in normal cells, including blood mononuclear cells, neuronal lipid rafts, and the placenta. The detection and characterization of AR-SVs in mammalian and non-mammalian species argue that AR-SV expression is evolutionarily conserved and that AR-SV-dependent signaling is a fundamental regulatory feature in multiple cellular contexts. These discoveries argue that alternative splicing of the AR transcript is a commonly used mechanism that leads to an expansion in the repertoire of signaling molecules needed in certain tissues. Various malignancies appropriate this mechanism of alternative AR splicing to acquire a proliferative and survival advantage.

2.
Sci Rep ; 13(1): 1762, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720985

RESUMO

The observed sex disparity in bladder cancer (BlCa) argues that androgen receptor (AR) signaling has a role in these malignancies. BlCas express full-length AR (FL-AR), constitutively active AR splice variants, including AR-v19, or both, and their depletion limits BlCa viability. However, the mechanistic basis of AR-dependence is unknown. Here, we depleted FL-AR, AR-v19, or all AR forms (T-AR), and performed RNA-seq studies to uncover that different AR forms govern distinct but partially overlapping transcriptional programs. Overlapping alterations include a decrease in mTOR and an increase of hypoxia regulated transcripts accompanied by a decline in oxygen consumption rate (OCR). Queries of BlCa databases revealed a significant negative correlation between AR expression and multiple hypoxia-associated transcripts arguing that this regulatory mechanism is a feature of high-grade malignancies. Our analysis of a 1600-compound library identified niclosamide as a strong ATPase inhibitor that reduces OCR in BlCa cells, decreased cell viability and induced apoptosis in a dose and time dependent manner. These results suggest that BlCa cells hijack AR signaling to enhance metabolic activity, promoting cell proliferation and survival; hence targeting this AR downstream vulnerability presents an attractive strategy to limit BlCa.


Assuntos
Receptores Androgênicos , Neoplasias da Bexiga Urinária , Humanos , Receptores Androgênicos/genética , Bexiga Urinária , Neoplasias da Bexiga Urinária/genética , Células Epiteliais , Hipóxia
3.
Animals (Basel) ; 12(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36077888

RESUMO

The male reproductive system develops from a minimally functioning gonad and nonfunctioning accessory sex glands in the neonate; sex steroids, presumed to be primary influencers of these changes, have been characterized in multiple species. This study focused on the expression of the androgen receptor as the principal mediator of androgen-induced signaling; the 5α reductase enzyme that converts testosterone to the more active dihydrotestosterone; and colony stimulating factor 1, a mediator of macrophage influence on organ development in the pig. The time points chosen to evaluate normal developmental changes during the juvenile and prepubertal intervals included the inflection time points of 6.5 weeks of age at the nadir of circulating estradiol and testosterone concentrations in juveniles, and 11 weeks of age, when these concentrations begin to increase. The role of sex steroid signaling in the regulation of gene expression was evaluated by the blockade of androgen and estrogen receptors and reduction in endogenous estrogens. Expression of colony stimulating factor 1 in the testes gradually decreased during development; developmental profiles in the prostate and seminal vesicles were clearly different. Interference with sex steroid signaling had no effect on the expression of these three genes in testicular tissue and minimal and transient effects in prostate and seminal vesicles.

4.
Cancer Lett ; 504: 49-57, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33549708

RESUMO

Bladder cancer (BlCa) exhibits a gender disparity where men are three times more likely to develop the malignancy than women suggesting a role for the androgen receptor (AR). Here we report that BlCa cells express low molecular weight (LMW) AR isoforms that are missing the ligand binding domain (LBD). Isoform expression was detected in most BlCa cells, while a few express the full-length AR. Immunofluorescence studies detect AR in the nucleus and cytoplasm, and localization is cell dependent. Cells with nuclear AR expression exhibit reduced viability and increased apoptosis on total AR depletion. A novel AR-LMW variant, AR-v19, that is missing the LBD and contains 15 additional amino acids encoded by intron 3 sequences was detected in most BlCa malignancies. AR-v19 localizes to the nucleus and can transactivate AR-dependent transcription in a dose dependent manner. AR-v19 depletion impairs cell viability and promotes apoptosis in cells that express this variant. Thus, AR splice variant expression is common in BlCa and instrumental in ensuring cell survival. This suggests that targeting AR or AR downstream effectors may be a therapeutic strategy for the treatment of this malignancy.


Assuntos
Apoptose , Receptores Androgênicos/genética , Neoplasias da Bexiga Urinária/patologia , Sobrevivência Celular , Feminino , Humanos , Masculino , Peso Molecular , Receptores Androgênicos/metabolismo , Neoplasias da Bexiga Urinária/metabolismo
5.
J Endocrinol ; 225(3): 125-34, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25876610

RESUMO

Development of the epididymis including blood-epididymal barrier formation is not required until sperm reach the epididymis peripuberally. Regulation of this development in the early postnatal period is largely unknown. The current objectives were to evaluate potential roles of endogenous estrogen and androgen signaling during early development of the corpus epididymidis and to determine the timing of formation of the blood-epididymal barrier in the pig. Effects of endogenous steroids were evaluated using littermates treated with vehicle, an aromatase inhibitor (letrozole) to reduce endogenous estrogens, an estrogen receptor antagonist (fulvestrant) or an androgen receptor antagonist (flutamide). Phosphorylated histone 3 immunohistochemistry was used to identify proliferating epithelial cells. Lanthanum nitrate and electron microscopy were used to analyze formation of the blood barrier in the corpus epididymidis. Reducing endogenous estrogens increased the number of proliferating corpus epithelial cells at 6 and 6.5 weeks of age compared with vehicle-treated boars (P<0.01 and P<0.001 respectively). Blocking androgen receptors did not alter proliferation rate at 6.5 weeks of age. Although barrier formation was similar between 6 and 6.5 weeks of age in vehicle-treated animals, intercellular barriers increased in letrozole-treated littermates at 6.5 weeks of age. Fulvestrant treatment, which should mimic aromatase inhibition for regulation through ESR1 and ESR2 signaling but potentially stimulate endogenous estrogen signaling through the G protein-coupled estrogen receptor (GPER), had the opposite effect on aromatase inhibition. These responses in conjunction with the presence of GPER in the corpus epididymidis suggest early corpus epididymal development is regulated partially by GPER.


Assuntos
Aromatase/metabolismo , Barreira Hematotesticular/crescimento & desenvolvimento , Epididimo/crescimento & desenvolvimento , Receptores Androgênicos/metabolismo , Desenvolvimento Sexual , Transdução de Sinais , Sus scrofa/crescimento & desenvolvimento , Antagonistas de Receptores de Andrógenos/farmacologia , Animais , Aromatase/química , Inibidores da Aromatase/farmacologia , Barreira Hematotesticular/efeitos dos fármacos , Barreira Hematotesticular/metabolismo , Barreira Hematotesticular/ultraestrutura , Epididimo/efeitos dos fármacos , Epididimo/metabolismo , Epididimo/ultraestrutura , Estradiol/análogos & derivados , Estradiol/farmacologia , Antagonistas do Receptor de Estrogênio/farmacologia , Flutamida/farmacologia , Fulvestranto , Letrozol , Masculino , Microscopia Eletrônica de Transmissão/veterinária , Nitrilas/farmacologia , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Receptores Androgênicos/química , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Desenvolvimento Sexual/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sus scrofa/fisiologia , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/ultraestrutura , Triazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...