Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 105(20): 7731-7741, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34568964

RESUMO

Iridoids are widely found from species of Bignoniaceae family and exhibit several biological activities, such as anti-inflammatory, antimicrobial, antioxidant, and antitumor. Specioside is an iridoid found from Tabebuia species, mainly in Tabebuia aurea. Thus, here fungus-mediated biotransformation of the iridoid specioside was investigated by seven fungi. The fungus-mediated biotransformation reactions resulted in a total of nineteen different analogs by fungus Aspergillus niger, Aspergillus flavus, Aspergillus japonicus, Aspergillus terreus, Aspergillus niveus, Penicillium crustosum, and Thermoascus aurantiacus. Non-glycosylated specioside was the main metabolite observed. The other analogs were yielded from ester hydrolysis, hydroxylation, methylation, and hydrogenation reactions. The non-glycosylated specioside and coumaric acid were yielded by all fungi-mediated biotransformation. Thus, fungus applied in this study showed the ability to perform hydroxylation and glycosidic, as well as ester hydrolysis reactions from glycosylated iridoid. KEY POINTS: • The biotransformation of specioside by seven fungi yielded nineteen analogs. • The non-glycosylated specioside was the main analog obtained. • Ester hydrolysis, hydroxylation, methylation, and hydrogenation reactions were observe.


Assuntos
Aspergillus niger , Iridoides , Aspergillus , Biotransformação , Glucosídeos Iridoides , Penicillium
2.
Phytochem Anal ; 32(6): 992-1002, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33634541

RESUMO

INTRODUCTION: The chemical diversity of plants plays an essential role in the development of new drugs. However, new bioactive compound identification and isolation are challenging due to the complexity and time-consuming nature of the traditional process. Recently, alternative strategies have become popular, such as the statistical approach to correlate compounds with biological activities, overcoming bottlenecks in bioactive natural product research. OBJECTIVE: We aimed to determine bioactive compounds against resistant human melanoma cells from leaves of Aspidosperma subincanum, Copaifera langsdorffii, Coussarea hydrangeifolia, Guarea guidonea and Tapirira guianensis, using a metabolomics approach. MATERIAL AND METHODS: The extracts and fractions were obtained by accelerated solvent extraction (ASE) and tested against resistant melanoma cells SK-MEL-28 and SK-MEL-103. Chemical analysis was performed by high-performance diode array detector tandem mass spectrometry (HPLC-DAD-MS/MS). Chemical and biological data were analysed through univariate and multivariate analysis. RESULTS: The species present high chemical diversity, including indole alkaloids, glycosylated flavonoids, galloylquinic acid derivatives, cinnamic acid derivatives, and terpenes. The ASE fractionation separated the compounds according to the physicochemical properties; only C. langsdorffii and T. guianensis extracts were active. Both results from the chemical profile and the biological assay were treated using a metabolomics approach to identify the contribution of different classes of secondary metabolites in the viability of human melanoma cells. The analyses showed the metabolites from C. langsdorffii and T. guianensis, such as polyphenols and terpenes, were the main compounds correlated with the biological response. CONCLUSION: These findings afford alternative pathways that are trustworthy and less time-consuming to identify new bioactive compounds against multidrug-resistant human melanoma cells.


Assuntos
Melanoma , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Melanoma/tratamento farmacológico , Metabolômica , Extratos Vegetais/farmacologia , Árvores
3.
Fitoterapia ; 136: 104179, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31121252

RESUMO

Essential oils, mixtures of volatile compounds, are targets of research for new antimicrobial drugs. In order to verify the potential from species of the Nectandra genus, the present study evaluated the essential oils from Nectandra amazonum, Nectandra cuspidata, Nectandra gardineri, Nectandra hihua and Nectandra megapotamica to prospect samples with high concentration of a component and its antibacterial, antibiofilm and anti-Trichomonas vaginalis activities. The essential oils from the leaves and barks were extracted by steam distillation and analyzed by gas chromatography coupled to mass spectrometry (GC-MS). The concentrations of 10 and 100 µg/mL of the essential oil were evaluated and the inhibition of bacterial growth and biofilm formation were measured, while for the evaluation of anti-T. vaginalis trophozoite viability, the concentrations from 7.8 to 1000 µg/mL were tested. Seventy-three compounds were identified from essential oils, highlighted bicyclogermacrene (up to 49.9%), elemicin (up to 42.4%), intermedeol (up to 58.2%), (E)-asarone (up to 45.9%) and (+)-α-bisabolol (up to 93.7%). The essential oil from N. megapotamica leaves presented 93.7% of (+)-α-bisabolol and demonstrated the high capacity of inhibition of the biofilm formation, in particular, against Staphylococcus aureus methicillin resistant (MRSA) and Pseudomonas aeruginosa. This sample also had significant activity against T. vaginalis (IC50 of 98.7 µg/mL) and demonstrated cytotoxic and hemolytic effects in Vero cells and human erythrocytes. In general, the Nectandra genus revealed high chemical variability and a N. megapotamica specimen accumulated a compound on high concentration with great potential for biotechnological exploration as a new antibiofilm and anti-T. vaginalis.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Lauraceae/química , Óleos Voláteis/farmacologia , Sesquiterpenos/farmacologia , Trichomonas vaginalis/efeitos dos fármacos , Animais , Antiprotozoários/farmacologia , Brasil , Chlorocebus aethiops , Eritrócitos/efeitos dos fármacos , Humanos , Sesquiterpenos Monocíclicos , Compostos Fitoquímicos/farmacologia , Casca de Planta/química , Folhas de Planta/química , Células Vero
4.
J Ethnopharmacol ; 233: 131-140, 2019 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-30590196

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tabebuia aurea (Silva Manso) Benth. & Hook. f. ex S. Moore is used as anti-inflammatory, analgesic and antiophidic in traditional medicine, though its pharmacological proprieties are still underexplored. In the bothropic envenoming, pain is a key symptom drove by an intense local inflammatory and neurotoxic event. The antivenom serum therapy is still the main treatment despite its poor local effects against pain and tissue injury. Furthermore, it is limited to ambulatorial niches, giving space for the search of new and more inclusive pharmacological approaches. AIM OF THE STUDY: evaluation of Tabebuia aurea hydroethanolic extract (HEETa) in hyperalgesia and neuronal injury induced by Bothrops mattogrossensis venom (VBm). MATERIALS AND METHODS: Stem barks from Tabebuia aurea were extracted with ethanol and water (7:3, v/v) to yield the extract HEETa. Then, HEETa was analyzed by LC-DAD-MS and its constituents were identified. Snake venoms were extracted from adult specimens of Bothrops mattogrossensis, lyophilized and kept at -20 °C until use. Male Swiss mice, weighting 20-25 g, were used to hyperalgesia (electronic von Frey), motor impairment (Rotarod test) and tissue injury evaluation (histopatology and ATF-3 immunohistochemistry). Therefore, three experimental groups were formed: VBm (1 pg, 1 ng, 0.3 µg, 1 µg, 3 and 6 µg/paw), HEETa orally (180, 540, 720, 810 or 1080 mg/kg; 10 mL/kg, 30 min prior VBm inoculation) and VBm neutralized (VBm: HEETa, 1:100 parts, respectively). In all set of experiments a control (saline group) was used. First, we made a dose-time-response course curve of VBm's induced hyperalgesia. Next, VBm maximum hyperalgesic dose was employed to perform HEETa orally dose-time-response course curve and analyses of VBm neutralized. Paw tissues for histopathology and DRGs were collected from animals inoculated with VBm maximum dose and treated with HEETa antihyperalgesic effective dose or neutralized VBm. Paws were extract two or 72 h after VBm inoculation and DRGs, in the maximum expected time expression of ATF-3 (72 h). RESULTS: From HEETa extract, glycosylated iridoids were identified, such as catalpol, minecoside, verminoside and specioside. VBm induced a time and dose dependent hyperalgesia with its highest effect seen with 3 µg/paw, 2 h after venom inoculation. HEETa effective dose (720 mg/kg) decreased significantly VBm induced hyperalgesia (3 µg/paw) with no motor impairment and signs of acute toxicity. HEETa antihyperalgesic action starts 1.5 h after VBm inoculation and lasted up until 2 h after VBm. Hyperalgesia wasn't reduced by VBm: HEETa neutralization. Histopathology revealed a large hemorragic field 2 h after VBm inoculation and an intense inflammatory infiltrate of polymorphonuclear cells at 72 h. Both HEETa orally and VBm: HEETa groups had a reduced inflammation at 72 h after VBm. Also, the venom significantly induced ATF-3 expression (35.37 ±â€¯3.25%) compared with saline group (4.18 ±â€¯0.68%) which was reduced in HEETa orally (25.87 ±â€¯2.57%) and VBm: HEETa (19.84 ±â€¯2.15%) groups. CONCLUSION: HEETa reduced the hyperalgesia and neuronal injury induced by VBm. These effects could be related to iridoid glycosides detected in HEETa and their intrinsic reported mechanism.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Bothrops , Hiperalgesia/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Venenos de Serpentes/toxicidade , Tabebuia , Fator 3 Ativador da Transcrição/metabolismo , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Gânglios Espinais/lesões , Hiperalgesia/metabolismo , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fitoterapia , Extratos Vegetais/farmacologia , Caules de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...