Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 82(14): 2557-2570.e7, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35594857

RESUMO

Antigen presentation by the human leukocyte antigen (HLA) on the cell surface is critical for the transduction of the immune signal toward cytotoxic T lymphocytes. DNA damage upregulates HLA class I presentation; however, the mechanism is unclear. Here, we show that DNA-damage-induced HLA (di-HLA) presentation requires an immunoproteasome, PSMB8/9/10, and antigen-transporter, TAP1/2, demonstrating that antigen production is essential. Furthermore, we show that di-HLA presentation requires ATR, AKT, mTORC1, and p70-S6K signaling. Notably, the depletion of CBP20, a factor initiating the pioneer round of translation (PRT) that precedes nonsense-mediated mRNA decay (NMD), abolishes di-HLA presentation, suggesting that di-antigen production requires PRT. RNA-seq analysis demonstrates that DNA damage reduces NMD transcripts in an ATR-dependent manner, consistent with the requirement for ATR in the initiation of PRT/NMD. Finally, bioinformatics analysis identifies that PRT-derived 9-mer peptides bind to HLA and are potentially immunogenic. Therefore, DNA damage signaling produces immunogenic antigens by utilizing the machinery of PRT/NMD.


Assuntos
Degradação do RNAm Mediada por Códon sem Sentido , Biossíntese de Proteínas , Apresentação de Antígeno , Dano ao DNA , Antígenos de Histocompatibilidade Classe I/genética , Humanos
2.
Cell Rep ; 38(5): 110335, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108530

RESUMO

Single-stranded DNA (ssDNA) arising as an intermediate of cellular processes on DNA is a potential vulnerability of the genome unless it is appropriately protected. Recent evidence suggests that R-loops, consisting of ssDNA and DNA-RNA hybrids, can form in the proximity of DNA double-strand breaks (DSBs) within transcriptionally active regions. However, how the vulnerability of ssDNA in R-loops is overcome during DSB repair remains unclear. Here, we identify RAP80 as a factor suppressing the vulnerability of ssDNA in R-loops, chromosome translocations, and deletions during DSB repair. Mechanistically, RAP80 prevents unscheduled nucleolytic processing of ssDNA in R-loops by CtIP. This mechanism promotes efficient DSB repair via transcription-associated end joining dependent on BRCA1, Polθ, and LIG1/3. Thus, RAP80 suppresses the vulnerability of R-loops during DSB repair, thereby precluding genomic abnormalities in a critical component of the genome caused by deleterious R-loop processing.


Assuntos
Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Chaperonas de Histonas/metabolismo , Estruturas R-Loop/fisiologia , DNA/genética , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA por Junção de Extremidades/fisiologia , DNA de Cadeia Simples/metabolismo , Humanos , RNA/genética
3.
Pediatr Surg Int ; 37(12): 1783-1790, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34491386

RESUMO

PURPOSE: Rhabdoid tumor of the kidney (RTK) is a rare, highly aggressive pediatric renal tumor. No specific biomarkers are available for detection of RTK, and the initial differential diagnosis from other pediatric abdominal tumors, including neuroblastoma (NB), is difficult. Exosomal miRNAs are novel cancer biomarkers that can be detected in biological fluids. We explored candidate RTK-specific exosomal miRNAs as novel biomarkers of RTK. METHODS: Exosomal miRNAs were collected from conditioned media of human RTK-derived cell lines, a human embryonic renal cell line, and human NB-derived cell lines. miRNA sequencing (miRNA-Seq) was performed to detect candidate RTK-specific exosomal miRNAs. The exosomal miRNA expression in conditioned media of tumor cell lines and serum from RTK xenograft-bearing mice was analyzed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). RESULTS: The expression of exosomal miR-214-3p detected by miRNA-Seq was highest in RTK-derived cell lines. Exosomal miR-214-3p expression level determined by qRT-PCR was significantly higher in RTK-derived cell lines than in the human embryonic renal cell line or NB-derived cell lines. Furthermore, the serum exosomal miR-214-3p expression level was significantly higher in RTK xenograft mice than controls. CONCLUSION: Our data indicated that exosomal miR-214-3p has potential as a novel biomarker of RTK.


Assuntos
Exossomos , Neoplasias Renais , MicroRNAs , Animais , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Criança , Exossomos/genética , Humanos , Neoplasias Renais/genética , Camundongos , MicroRNAs/genética
4.
J Radiat Res ; 62(5): 773-781, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34196706

RESUMO

Programmed death ligand 1 (PD-L1) expression on the surface of cancer cells affects the efficacy of anti-PD-1/PD-L1 immune checkpoint therapy. However, the mechanism underlying PD-L1 expression in cancer cells is not fully understood, particularly after ionizing radiation (IR). Here, we examined the impact of high linear energy transfer (LET) carbon-ion irradiation on the expression of PD-L1 in human osteosarcoma U2OS cells. We found that the upregulation of PD-L1 expression after high LET carbon-ion irradiation was greater than that induced by X-rays at the same physical and relative biological effectiveness (RBE) dose, and that the upregulation of PD-L1 induced by high LET carbon-ion irradiation was predominantly dependent on ataxia telangiectasia and Rad3-related (ATR) kinase activity. Moreover, we showed that the downstream signaling, e.g. STAT1 phosphorylation and IRF1 expression, was upregulated to a greater extent after high LET carbon-ion irradiation than X-rays, and that IRF1 upregulation was also ATR dependent. Finally, to visualize PD-L1 molecules on the cell surface in 3D, we applied immunofluorescence-based super-resolution imaging. The three-dimensional structured illumination microscopy (3D-SIM) analyses revealed substantial increases in the number of presented PD-L1 molecules on the cell surface after high LET carbon-ion irradiation compared with X-ray irradiation.


Assuntos
Antígeno B7-H1/biossíntese , Neoplasias Ósseas/patologia , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Radioterapia com Íons Pesados , Proteínas de Neoplasias/biossíntese , Osteossarcoma/patologia , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Humanos , Imageamento Tridimensional , Fator Regulador 1 de Interferon/biossíntese , Fator Regulador 1 de Interferon/genética , Transferência Linear de Energia , Morfolinas/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Fosforilação/efeitos da radiação , Processamento de Proteína Pós-Traducional/efeitos da radiação , Pirazinas/farmacologia , Pironas/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Fator de Transcrição STAT1/metabolismo , Sulfonas/farmacologia , Regulação para Cima/efeitos da radiação , Raios X
5.
Sci Rep ; 10(1): 9211, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32514018

RESUMO

Mature adipocyte-derived dedifferentiated fat (DFAT) cells can be prepared efficiently and with minimal invasiveness to the donor. They can be utilized as a source of transplanted cells during therapy. Although the transplantation of DFAT cells into an ischemic tissue enhances angiogenesis and increases vascular flow, there is little information regarding the mechanism of the therapeutic angiogenesis. To further study this, mice ischemic hindlimb model was used. It was confirmed that in comparison with the adipose derived stem cells and fibroblasts, the transplantation of DFAT cells led to a significant improvement in the blood flow and increased mature blood vessel density. The ability of DFAT cells to secrete angiogenic factors in hypoxic conditions and upon co-culture with vascular endothelial cells was then examined. Furthermore, we examined the possibility that DFAT cells differentiating into pericytes. The therapeutic angiogenic effects of DFAT cells were observed by the secretion of angiogenic factors and pericyte differentiation by transforming growth factor ß1 signalling via Smad2/3. DFAT cells can be prepared with minimal invasiveness and high efficiency and are expected to become a source of transplanted cells in the future of angiogenic cell therapy.


Assuntos
Adipócitos/citologia , Desdiferenciação Celular , Neovascularização Fisiológica , Adipócitos/metabolismo , Adipócitos/transplante , Animais , Diferenciação Celular , Técnicas de Cocultura , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Membro Posterior/patologia , Isquemia/metabolismo , Isquemia/patologia , Isquemia/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pericitos/citologia , Pericitos/metabolismo , Transdução de Sinais , Proteína Smad2/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
DNA Repair (Amst) ; 91-92: 102872, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32502756

RESUMO

The cell-killing effect of radiotherapy largely depends on unrepaired DNA double-stranded breaks (DSBs) or lethal chromosome aberrations induced by DSBs. Thus, the capability of DSB repair is critically important for the cancer-cell-killing effect of ionizing radiation. Here, we investigated the involvement of the DNA damage signaling factors ataxia telangiectasia mutated (ATM), ring finger protein 8 (RNF8), and RNF168 in quiescent G0/G1 cells, which are expressed in the majority of cell populations in tumors, after high linear energy transfer (LET) carbon-ion irradiation. Interestingly, ATM inhibition caused a substantial DSB repair defect after high-LET carbon-ion irradiation. Similarly, RNF8 or RNF168 depletion caused a substantial DSB repair defect. ATM inhibition did not exert an additive effect in RNF8-depleted cells, suggesting that ATM and RNF8 function in the same pathway. Importantly, we found that the RNF8 RING mutant showed a similar DSB repair defect, suggesting the requirement of ubiquitin ligase activity in this repair pathway. The RNF8 FHA domain was also required for DSB repair in this axis. Furthermore, the p53-binding protein 1 (53BP1), which is an important downstream factor in RNF8-dependent DSB repair, was also required for this repair. Importantly, either ATM inhibition or RNF8 depletion increased the frequency of chromosomal breaks, but reduced dicentric chromosome formation, demonstrating that ATM/RNF8 is required for the rejoining of DSB ends for the formation of dicentric chromosomes. Finally, we showed that RNF8 depletion augmented radiosensitivity after high-LET carbon-ion irradiation. This study suggests that the inhibition of RNF8 activity or its downstream pathway may augment the efficacy of high-LET carbon-ion therapy.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Células A549 , Linhagem Celular , Aberrações Cromossômicas , DNA/metabolismo , DNA/efeitos da radiação , Humanos , Transferência Linear de Energia , Tolerância a Radiação , Transdução de Sinais , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Raios X
7.
Oncol Rep ; 42(6): 2293-2302, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31578593

RESUMO

Ribosomes are important cellular components that maintain cellular homeostasis through overall protein synthesis. The nucleolus is a prominent subnuclear structure that contains ribosomal DNA (rDNA) encoding ribosomal RNA (rRNA), an essential component of ribosomes. Despite the significant role of the rDNA­rRNA­ribosome axis in cellular homeostasis, the stability of rDNA in the context of the DNA damage response has not been fully investigated. In the present study, the number and morphological changes of nucleolin, a marker of the nucleolus, were examined following ionizing radiation (IR) in order to investigate the impact of DNA damage on nucleolar stability. An increase in the number of nucleoli per cell was found in HCT116 and U2OS cells following IR. Interestingly, the IR­dependent increase in nucleolar fragmentation was enhanced by p53 deficiency. In addition, the morphological analysis revealed several distinct types of nucleolar fragmentation following IR. The pattern of nucleolar morphology differed between HCT116 and U2OS cells, and the p53 deficiency altered the pattern of nucleolar morphology. Finally, a significant decrease in rRNA synthesis was observed in HCT116 p53­/­ cells following IR, suggesting that severe nucleolar fragmentation downregulates rRNA transcription. The findings of the present study suggest that p53 plays a key role in protecting the transcriptional activity of rDNA in response to DNA damage.


Assuntos
Neoplasias Ósseas/genética , Nucléolo Celular/metabolismo , Neoplasias Colorretais/genética , Osteossarcoma/genética , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Supressora de Tumor p53/deficiência , Apoptose , Neoplasias Ósseas/patologia , Nucléolo Celular/genética , Nucléolo Celular/efeitos da radiação , Neoplasias Colorretais/patologia , Dano ao DNA , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Humanos , Osteossarcoma/patologia , Fosfoproteínas/genética , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/genética , Radiação Ionizante , Transcrição Gênica , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Nucleolina
8.
Mol Cell Oncol ; 6(1): 1542244, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30788418

RESUMO

The roles of RNA in the DNA damage response are emerging. We highlight findings from our recent study demonstrating the mechanism for transcription-associated homologous recombination repair (TA-HRR) of DNA double-strand breaks and the critical role of R-loops in TA-HRR.

9.
Cell ; 175(2): 558-570.e11, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30245011

RESUMO

Given that genomic DNA exerts its function by being transcribed, it is critical for the maintenance of homeostasis that DNA damage, such as double-strand breaks (DSBs), within transcriptionally active regions undergoes accurate repair. However, it remains unclear how this is achieved. Here, we describe a mechanism for transcription-associated homologous recombination repair (TA-HRR) in human cells. The process is initiated by R-loops formed upon DSB induction. We identify Rad52, which is recruited to the DSB site in a DNA-RNA-hybrid-dependent manner, as playing pivotal roles in promoting XPG-mediated R-loop processing and initiating subsequent repair by HRR. Importantly, dysfunction of TA-HRR promotes DSB repair via non-homologous end joining, leading to a striking increase in genomic aberrations. Thus, our data suggest that the presence of R-loops around DSBs within transcriptionally active regions promotes accurate repair of DSBs via processing by Rad52 and XPG to protect genomic information in these critical regions from gene alterations.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Proteínas Nucleares/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Reparo de DNA por Recombinação/fisiologia , Fatores de Transcrição/metabolismo , Linhagem Celular , DNA/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , Endonucleases/fisiologia , Recombinação Homóloga , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , RNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...