Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38746302

RESUMO

We develop a data harmonization approach for C. elegans volumetric microscopy data, still or video, consisting of a standardized format, data pre-processing techniques, and a set of human-in-the-loop machine learning based analysis software tools. We unify a diverse collection of 118 whole-brain neural activity imaging datasets from 5 labs, storing these and accompanying tools in an online repository called WormID ( wormid.org ). We use this repository to generate a statistical atlas that, for the first time, enables accurate automated cellular identification that generalizes across labs, approaching human performance in some cases. We mine this repository to identify factors that influence the developmental positioning of neurons. To facilitate communal use of this repository, we created open-source software, code, web-based tools, and tutorials to explore and curate datasets for contribution to the scientific community. This repository provides a growing resource for experimentalists, theorists, and toolmakers to investigate neuroanatomical organization and neural activity across diverse experimental paradigms, develop and benchmark algorithms for automated neuron detection, segmentation, cell identification, tracking, and activity extraction, and inform models of neurobiological development and function.

2.
Cell ; 186(13): 2911-2928.e20, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37269832

RESUMO

Animals with complex nervous systems demand sleep for memory consolidation and synaptic remodeling. Here, we show that, although the Caenorhabditis elegans nervous system has a limited number of neurons, sleep is necessary for both processes. In addition, it is unclear if, in any system, sleep collaborates with experience to alter synapses between specific neurons and whether this ultimately affects behavior. C. elegans neurons have defined connections and well-described contributions to behavior. We show that spaced odor-training and post-training sleep induce long-term memory. Memory consolidation, but not acquisition, requires a pair of interneurons, the AIYs, which play a role in odor-seeking behavior. In worms that consolidate memory, both sleep and odor conditioning are required to diminish inhibitory synaptic connections between the AWC chemosensory neurons and the AIYs. Thus, we demonstrate in a living organism that sleep is required for events immediately after training that drive memory consolidation and alter synaptic structures.


Assuntos
Caenorhabditis elegans , Odorantes , Animais , Caenorhabditis elegans/fisiologia , Olfato , Sono/fisiologia , Sinapses/fisiologia
3.
Curr Biol ; 32(16): 3443-3459.e8, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35809568

RESUMO

The wiring architecture of neuronal networks is assumed to be a strong determinant of their dynamical computations. An ongoing effort in neuroscience is therefore to generate comprehensive synapse-resolution connectomes alongside brain-wide activity maps. However, the structure-function relationship, i.e., how the anatomical connectome and neuronal dynamics relate to each other on a global scale, remains unsolved. Systematically, comparing graph features in the C. elegans connectome with correlations in nervous system-wide neuronal dynamics, we found that few local connectivity motifs and mostly other non-local features such as triplet motifs and input similarities can predict functional relationships between neurons. Surprisingly, quantities such as connection strength and amount of common inputs do not improve these predictions, suggesting that the network's topology is sufficient. We demonstrate that hub neurons in the connectome are key to these relevant graph features. Consistently, inhibition of multiple hub neurons specifically disrupts brain-wide correlations. Thus, we propose that a set of hub neurons and non-local connectivity features provide an anatomical substrate for global brain dynamics.


Assuntos
Caenorhabditis elegans , Conectoma , Animais , Encéfalo/fisiologia , Caenorhabditis elegans/fisiologia , Neurônios/fisiologia
4.
Patterns (N Y) ; 3(4): 100490, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35465229

RESUMO

Sean Escola, Saul Kato, and Pavan Ramkumar explain the importance of data science in their research. They have developed a simple non-parametric statistical method called the Rank-to-Group (RTG) score that identifies hierarchical confounder effects in raw data and machine learning-derived data embeddings. This approach should be generally useful in experiment-analysis cycles and to ensure confounder robustness in machine learning models.

5.
Patterns (N Y) ; 3(4): 100451, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35465234

RESUMO

The promise of machine learning (ML) to extract insights from high-dimensional datasets is tempered by confounding variables. It behooves scientists to determine if a model has extracted the desired information or instead fallen prey to bias. Due to features of natural phenomena and experimental design constraints, bioscience datasets are often organized in nested hierarchies that obfuscate the origins of confounding effects and render confounder amelioration methods ineffective. We propose a non-parametric statistical method called the rank-to-group (RTG) score that identifies hierarchical confounder effects in raw data and ML-derived embeddings. We show that RTG scores correctly assign the effects of hierarchical confounders when linear methods fail. In a public biomedical image dataset, we discover unreported effects of experimental design. We then use RTG scores to discover crossmodal correlated variability in a multi-phenotypic biological dataset. This approach should be generally useful in experiment-analysis cycles and to ensure confounder robustness in ML models.

7.
Neuron ; 107(3): 454-469.e6, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32574560

RESUMO

Neuroscience relies on techniques for imaging the structure and dynamics of neural circuits, but the cell bodies of individual neurons are often obscured by overlapping fluorescence from axons and dendrites in surrounding neuropil. Here, we describe two strategies for using the ribosome to restrict the expression of fluorescent proteins to the neuronal soma. We show first that a ribosome-tethered nanobody can be used to trap GFP in the cell body, thereby enabling direct visualization of previously undetectable GFP fluorescence. We then design a ribosome-tethered GCaMP for imaging calcium dynamics. We show that this reporter faithfully tracks somatic calcium dynamics in the mouse brain while eliminating cross-talk between neurons caused by contaminating neuropil. In worms, this reporter enables whole-brain imaging with faster kinetics and brighter fluorescence than commonly used nuclear GCaMPs. These two approaches provide a general way to enhance the specificity of imaging in neurobiology.


Assuntos
Encéfalo/diagnóstico por imagem , Cálcio/metabolismo , Corpo Celular/patologia , Neurônios/patologia , Imagem Óptica/métodos , Ribossomos/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Caenorhabditis elegans , Proteínas de Ligação ao Cálcio , Corpo Celular/metabolismo , Proteínas de Fluorescência Verde , Camundongos , Neurônios/metabolismo , Neurópilo , Proteína Ribossômica L10/metabolismo , Anticorpos de Domínio Único
8.
Elife ; 52016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27222228

RESUMO

In animal locomotion a tradeoff exists between stereotypy and flexibility: fast long-distance travelling (LDT) requires coherent regular motions, while local sampling and area-restricted search (ARS) rely on flexible movements. We report here on a posture control system in C. elegans that coordinates these needs. Using quantitative posture analysis we explain worm locomotion as a composite of two modes: regular undulations versus flexible turning. Graded reciprocal regulation of both modes allows animals to flexibly adapt their locomotion strategy under sensory stimulation along a spectrum ranging from LDT to ARS. Using genetics and functional imaging of neural activity we characterize the counteracting interneurons AVK and DVA that utilize FLP-1 and NLP-12 neuropeptides to control both motor modes. Gradual regulation of behaviors via this system is required for spatial navigation during chemotaxis. This work shows how a nervous system controls simple elementary features of posture to generate complex movements for goal-directed locomotion strategies.


Assuntos
Caenorhabditis elegans/fisiologia , Locomoção , Neurônios Motores/fisiologia , Fenômenos Fisiológicos do Sistema Nervoso , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Quimiotaxia , Modelos Neurológicos , Neuropeptídeos/metabolismo
9.
Cell ; 163(3): 656-69, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26478179

RESUMO

While isolated motor actions can be correlated with activities of neuronal networks, an unresolved problem is how the brain assembles these activities into organized behaviors like action sequences. Using brain-wide calcium imaging in Caenorhabditis elegans, we show that a large proportion of neurons across the brain share information by engaging in coordinated, dynamical network activity. This brain state evolves on a cycle, each segment of which recruits the activities of different neuronal sub-populations and can be explicitly mapped, on a single trial basis, to the animals' major motor commands. This organization defines the assembly of motor commands into a string of run-and-turn action sequence cycles, including decisions between alternative behaviors. These dynamics serve as a robust scaffold for action selection in response to sensory input. This study shows that the coordination of neuronal activity patterns into global brain dynamics underlies the high-level organization of behavior.


Assuntos
Caenorhabditis elegans/citologia , Caenorhabditis elegans/fisiologia , Animais , Encéfalo/citologia , Encéfalo/fisiologia , Fenômenos Eletrofisiológicos , Neurônios Motores/citologia , Neurônios Motores/fisiologia , Rede Nervosa , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais
10.
Nat Methods ; 11(7): 727-730, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24836920

RESUMO

High-speed, large-scale three-dimensional (3D) imaging of neuronal activity poses a major challenge in neuroscience. Here we demonstrate simultaneous functional imaging of neuronal activity at single-neuron resolution in an entire Caenorhabditis elegans and in larval zebrafish brain. Our technique captures the dynamics of spiking neurons in volumes of ∼700 µm × 700 µm × 200 µm at 20 Hz. Its simplicity makes it an attractive tool for high-speed volumetric calcium imaging.


Assuntos
Cálcio/metabolismo , Imageamento Tridimensional/métodos , Microscopia/métodos , Neurônios/fisiologia , Animais , Caenorhabditis elegans , Sinalização do Cálcio , Larva/ultraestrutura , Microscopia de Fluorescência/métodos , Peixe-Zebra
11.
Neuron ; 81(3): 616-28, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24440227

RESUMO

Animals track fluctuating stimuli over multiple timescales during natural olfactory behaviors. Here, we define mechanisms underlying these computations in Caenorhabditis elegans. By characterizing neuronal calcium responses to rapidly fluctuating odor sequences, we show that sensory neurons reliably track stimulus fluctuations relevant to behavior. AWC olfactory neurons respond to multiple odors with subsecond precision required for chemotaxis, whereas ASH nociceptive neurons integrate noxious cues over several seconds to reach a threshold for avoidance behavior. Each neuron's response to fluctuating stimuli is largely linear and can be described by a biphasic temporal filter and dynamical model. A calcium channel mutation alters temporal filtering and avoidance behaviors initiated by ASH on similar timescales. A sensory G-alpha protein mutation affects temporal filtering in AWC and alters steering behavior in a way that supports an active sensing model for chemotaxis. Thus, temporal features of sensory neurons can be propagated across circuits to specify behavioral dynamics.


Assuntos
Comportamento Animal/fisiologia , Células Quimiorreceptoras/fisiologia , Modelos Biológicos , Dinâmica não Linear , Olfato/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Cálcio/metabolismo , Potenciais Evocados/genética , Nociceptores/metabolismo , Odorantes , Condutos Olfatórios/citologia
12.
Nat Neurosci ; 13(5): 615-21, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20364145

RESUMO

Many neurons release classical transmitters together with neuropeptide co-transmitters whose functions are incompletely understood. Here we define the relationship between two transmitters in the olfactory system of C. elegans, showing that a neuropeptide-to-neuropeptide feedback loop alters sensory dynamics in primary olfactory neurons. The AWC olfactory neuron is glutamatergic and also expresses the peptide NLP-1. Worms with nlp-1 mutations show increased AWC-dependent behaviors, suggesting that NLP-1 limits the normal response. The receptor for NLP-1 is the G protein-coupled receptor NPR-11, which acts in postsynaptic AIA interneurons. Feedback from AIA interneurons modulates odor-evoked calcium dynamics in AWC olfactory neurons and requires INS-1, a neuropeptide released from AIA. The neuropeptide feedback loop dampens behavioral responses to odors on short and long timescales. Our results point to neuronal dynamics as a site of behavioral regulation and reveal the ability of neuropeptide feedback to remodel sensory networks on multiple timescales.


Assuntos
Retroalimentação Fisiológica/fisiologia , Dinâmica não Linear , Odorantes , Condutos Olfatórios/citologia , Peptídeos/farmacologia , Células Receptoras Sensoriais/efeitos dos fármacos , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Animais , Animais Geneticamente Modificados , Comportamento Animal , Caenorhabditis elegans/anatomia & histologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Cálcio/metabolismo , Linhagem Celular Transformada , Relação Dose-Resposta a Droga , Retroalimentação Fisiológica/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Humanos , Modelos Neurológicos , Mutação/genética , Peptídeos/genética , Receptores de Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/fisiologia , Células Receptoras Sensoriais/fisiologia , Fatores de Tempo , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...