Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 4321, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619308

RESUMO

A broad-spectrum reactive oxygen species (ROS)-scavenging hybrid material (CASCADE) was developed by sequential adsorption of heparin (HEP) and poly(L-lysine) (PLL) polyelectrolytes together with superoxide dismutase (SOD) and horseradish peroxidase (HRP) antioxidant enzymes on layered double hydroxide (LDH) nanoclay support. The synthetic conditions were optimized so that CASCADE possessed remarkable structural (no enzyme leakage) and colloidal (excellent resistance against salt-induced aggregation) stability. The obtained composite was active in decomposition of both superoxide radical anions and hydrogen peroxide in biochemical assays revealing that the strong electrostatic interaction with the functionalized support led to high enzyme loadings, nevertheless, it did not interfere with the native enzyme conformation. In vitro tests demonstrated that ROS generated in human cervical adenocarcinoma cells were successfully consumed by the hybrid material. The cellular uptake was not accompanied with any toxicity effects, which makes the developed CASCADE a promising candidate for treatment of oxidative stress-related diseases.


Assuntos
Enzimas Imobilizadas/química , Nanocompostos/química , Espécies Reativas de Oxigênio/química , Antioxidantes/química , Coloides/química , Ativação Enzimática , Peroxidase do Rábano Silvestre/química , Cinética , Estrutura Molecular , Nanocompostos/ultraestrutura , Oxirredução , Superóxido Dismutase/química
2.
J Physiol ; 598(6): 1253-1270, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31917868

RESUMO

KEY POINTS: Acute biliary pancreatitis is a significant clinical challenge as currently no specific pharmaceutical treatment exists. Intracellular Ca2+ overload, increased reactive oxygen species (ROS) production, mitochondrial damage and intra-acinar digestive enzyme activation caused by bile acids are hallmarks of acute biliary pancreatitis. Transient receptor potential melastatin 2 (TRPM2) is a non-selective cation channel that has recently emerged as an important contributor to oxidative-stress-induced cellular Ca2+ overload across different diseases. We demonstrated that TRPM2 is expressed in the plasma membrane of mouse pancreatic acinar and ductal cells, which can be activated by increased oxidative stress induced by H2 O2 treatment and contributed to bile acid-induced extracellular Ca2+ influx in acinar cells, which promoted acinar cell necrosis in vitro and in vivo. These results suggest that the inhibition of TRPM2 may be a potential treatment option for biliary pancreatitis. ABSTRACT: Acute biliary pancreatitis poses a significant clinical challenge as currently no specific pharmaceutical treatment exists. Disturbed intracellular Ca2+ signalling caused by bile acids is a hallmark of the disease, which induces increased reactive oxygen species (ROS) production, mitochondrial damage, intra-acinar digestive enzyme activation and cell death. Because of this mechanism of action, prevention of toxic cellular Ca2+ overload is a promising therapeutic target. Transient receptor potential melastatin 2 (TRPM2) is a non-selective cation channel that has recently emerged as an important contributor to oxidative-stress-induced cellular Ca2+ overload across different diseases. However, the expression and possible functions of TRPM2 in the exocrine pancreas remain unknown. Here we found that TRPM2 is expressed in the plasma membrane of mouse pancreatic acinar and ductal cells, which can be activated by increased oxidative stress induced by H2 O2 treatment. TRPM2 activity was found to contribute to bile acid-induced extracellular Ca2+ influx in acinar cells, but did not have the same effect in ductal cells. The generation of intracellular ROS in response to bile acids was remarkably higher in pancreatic acinar cells compared to isolated ducts, which can explain the difference between acinar and ductal cells. This activity promoted acinar cell necrosis in vitro independently from mitochondrial damage or mitochondrial fragmentation. In addition, bile-acid-induced experimental pancreatitis was less severe in TRPM2 knockout mice, whereas the lack of TRPM2 had no protective effect in cerulein-induced acute pancreatitis. Our results suggest that the inhibition of TRPM2 may be a potential treatment option for biliary pancreatitis.


Assuntos
Células Acinares/patologia , Cálcio/metabolismo , Pancreatite/patologia , Canais de Cátion TRPM/genética , Doença Aguda , Animais , Camundongos , Camundongos Knockout , Necrose
3.
Lab Invest ; 100(1): 84-97, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31409889

RESUMO

Pancreatic exocrine secretory processes are challenging to investigate on primary epithelial cells. Pancreatic organoid cultures may help to overcome shortcomings of the current models, however the ion secretory processes in pancreatic organoids-and therefore their physiological relevance or their utility in disease modeling-are not known. To answer these questions, we provide side-by-side comparison of gene expression, morphology, and function of epithelial cells in primary isolated pancreatic ducts and organoids. We used mouse pancreatic ductal fragments for experiments or were grown in Matrigel to obtain organoid cultures. Using PCR analysis we showed that gene expression of ion channels and transporters remarkably overlap in primary ductal cells and organoids. Morphological analysis with scanning electron microscopy revealed that pancreatic organoids form polarized monolayers with brush border on the apical membrane. Whereas the expression and localization of key proteins involved in ductal secretion (cystic fibrosis transmembrane conductance regulator, Na+/H+ exchanger 1 and electrogenic Na+/HCO3- cotransporter 1) are equivalent to the primary ductal fragments. Measurements of intracellular pH and Cl- levels revealed no significant difference in the activities of the apical Cl-/HCO3- exchange, or in the basolateral Na+ dependent HCO3- uptake. In summary we found that ion transport activities in the mouse pancreatic organoids are remarkably similar to those observed in freshly isolated primary ductal fragments. These results suggest that organoids can be suitable and robust model to study pancreatic ductal epithelial ion transport in health and diseases and facilitate drug development for secretory pancreatic disorders like cystic fibrosis, or chronic pancreatitis.


Assuntos
Íons/metabolismo , Organoides , Pâncreas Exócrino/fisiologia , Ductos Pancreáticos/fisiologia , Animais , Sinalização do Cálcio , Técnicas de Cultura , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Camundongos
4.
Sci Rep ; 9(1): 9444, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31263168

RESUMO

The three phases of the applied acquired equivalence learning test, i.e. acquisition, retrieval and generalization, investigate the capabilities of humans in associative learning, working memory load and rule-transfer, respectively. Earlier findings denoted the role of different subcortical structures and cortical regions in the visual test. However, there is a lack of information about how multimodal cues modify the EEG-patterns during acquired equivalence learning. To test this we have recorded EEG from 18 healthy volunteers and analyzed the power spectra and the strength of cross-frequency coupling, comparing a unimodal visual-guided and a bimodal, audio-visual-guided paradigm. We found that the changes in the power of the different frequency band oscillations were more critical during the visual paradigm and they showed less synchronized activation compared to the audio-visual paradigm. These findings indicate that multimodal cues require less prominent, but more synchronized cortical contribution, which might be a possible biomarker of forming multimodal associations.


Assuntos
Aprendizagem por Associação , Percepção Auditiva/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Encéfalo/fisiologia , Sinais (Psicologia) , Eletroencefalografia , Feminino , Humanos , Masculino , Memória de Curto Prazo , Estimulação Luminosa , Adulto Jovem
5.
Front Hum Neurosci ; 12: 188, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867412

RESUMO

The computer-based Rutgers Acquired Equivalence test (RAET) is a widely used paradigm to test the function of subcortical structures in visual associative learning. The test consists of an acquisition (pair learning) and a test (rule transfer) phase, associated with the function of the basal ganglia and the hippocampi, respectively. Obviously, such a complex task also requires cortical involvement. To investigate the activity of different cortical areas during this test, 64-channel EEG recordings were recorded in 24 healthy volunteers. Fast-Fourier and Morlet wavelet convolution analyses were performed on the recordings. The most robust power changes were observed in the theta (4-7 Hz) and gamma (>30 Hz) frequency bands, in which significant power elevation was observed in the vast majority of the subjects, over the parieto-occipital and temporo-parietal areas during the acquisition phase. The involvement of the frontal areas in the acquisition phase was remarkably weaker. No remarkable cortical power elevations were found in the test phase. In fact, the power of the alpha and beta bands was significantly decreased over the parietooccipital areas. We conclude that the initial acquisition of the image pairs requires strong cortical involvement, but once the pairs have been learned, neither retrieval nor generalization requires strong cortical contribution.

6.
Neuroscience ; 356: 182-192, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28546109

RESUMO

This study focuses on the important question whether brain activity recorded from anesthetized, paralyzed animals is comparable to that recorded from awake, behaving ones. We compared neuronal activity recorded from the caudate nucleus (CN) of two halothane-anesthetized, paralyzed and two awake, behaving cats. In both models, extracellular recordings were made from the CN during static and dynamic visual stimulation. The anesthesia was maintained during the recordings by a gaseous mixture of air and halothane (1.0%). The behaving animals were trained to perform a visual fixation task. Based on their electrophysiological properties, the recorded CN neurons were separated into three different classes: phasically active (PANs), high firing (HFNs), and tonically active (TANs) neurons. Halothane anesthesia significantly decreased the background activity of the CN neurons in all three classes. The anesthesia had the most remarkable suppressive effect on PANs, where the background activity was consistently under 1 spike/s. The analysis of these responses was almost impossible due to the extremely low activity. The evoked responses during both static and dynamic visual stimulation were obvious in the behaving cats. On the other hand, only weak visual responses were found in some neurons of halothane anesthetized cats. These results show that halothane gas anesthesia has a marked suppressive effect on the feline CN. We suggest that for the purposes of the visual and related multisensory/sensorimotor electrophysiological exploration of the CN, behaving animal models are preferable over anesthetized ones.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Núcleo Caudado/efeitos dos fármacos , Halotano/farmacologia , Vigília/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Gatos , Núcleo Caudado/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Estimulação Luminosa/métodos , Vias Visuais/efeitos dos fármacos , Vias Visuais/fisiologia , Vigília/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...