Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38668157

RESUMO

Metal-mediated base pairing of DNA has been a topic of extensive research spanning over more than four decades. Precise positioning of a single metal ion by predetermining the DNA sequence, as well as improved conductivity offered by the ions, make these structures interesting candidates in the context of using DNA in nanotechnology. Here, we report the formation and characterization of conjugates of long (kilo bases) homoguanine DNA strands with silver ions. We demonstrate using atomic force microscopy (AFM) and scanning tunneling microscope (STM) that binding of silver ions leads to folding of homoguanine DNA strands in a "hairpin" fashion to yield double-helical, left-handed molecules composed of G-G base pairs each stabilized by a silver ion. Further folding of the DNA-silver conjugate yields linear molecules in which the two halves of the double helix are twisted one against the other in a right-handed fashion. Quantum mechanical calculations on smaller molecular models support the helical twist directions obtained by the high resolution STM analysis. These long guanine-based nanostructures bearing a chain of silver ions have not been synthesized and studied before and are likely to possess conductive properties that will make them attractive candidates for nanoelectronics.

2.
Nanomaterials (Basel) ; 13(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38132978

RESUMO

Here we report the synthesis of ultrasmall (2 nm in diameter) ATP-coated gold nanoparticles, ATP-NPs. ATP-NPs can be enlarged in a predictable manner by the surface-catalyzed reduction of gold ions with ascorbate, yielding uniform gold nanoparticles ranging in size from 2 to 5 nm in diameter. Using atomic force microscopy (AFM), we demonstrate that ATP-NPs can efficiently and selectively bind to a short non-hybridized 5A/5A region (composed of a 5A-nucleotide on each strand of the double helix) inserted into a circular double-stranded plasmid, Puc19. Neither small (1.4 nm in diameter) commercially available nanoparticles nor 5 nm citrate-protected ones are capable of binding to the plasmid. The unique ability to specifically target DNA regions characterized by local structural alterations of the double helix can pave the way for applications of the particles in the detection of genomic DNA regions containing mismatches and mutations that are common for cancer cells.

3.
Cancers (Basel) ; 14(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36230729

RESUMO

Peptide nucleic acid (PNA) may be used in various biomedical applications; however, these are currently limited, due to its low solubility in aqueous solutions. In this study, a methodology to overcome this limitation is demonstrated, as well as the effect of PNA on cell viability. We show that extruding a mixture of natural phospholipids and short (6-22 bases), cytosine-rich PNA through a 100 nm pore size membrane under mild acidic conditions resulted in the formation of small (60-90 nm in diameter) multilamellar vesicles (SMVs) comprising several (3-5) concentric lipid membranes. The PNA molecules, being positively charged under acidic conditions (due to protonation of cytosine bases in the sequence), bind electrostatically to negatively charged phospholipid membranes. The large membrane surface area allowed the encapsulation of thousands of PNA molecules in the vesicle. SMVs were conjugated with the designed ankyrin repeat protein (DARPin_9-29), which interacts with human epidermal growth factor receptor 2 (HER2), overexpressed in human breast cancer. The conjugate was shown to enter HER2-overexpressing cells by receptor-mediated endocytosis. PNA molecules, released from lysosomes, aggregate in the cytoplasm into micron-sized particles, which interfere with normal cell functioning, causing cell death. The ability of DARPin-functionalized SMVs to specifically deliver large quantities of PNA to cancer cells opens a new promising avenue for cancer therapy.

4.
Nano Lett ; 21(21): 8987-8992, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34694812

RESUMO

Throughout the past few decades, guanine quadruplex DNA structures have attracted much interest both from a fundamental material science perspective and from a technologically oriented perspective. Novel guanine octuplex DNA, formed from coiled quadruplex DNA, was recently discovered as a stable and rigid DNA-based nanostructure. A detailed electronic structure study of this new nanomaterial, performed by scanning tunneling spectroscopy on a subsingle-molecule level at cryogenic temperature, is presented herein. The electronic levels and lower energy gap of guanine octuplex DNA compared to quadruplex DNA dictate higher transverse conductivity through guanine octads than through guanine tetrads.


Assuntos
Quadruplex G , Nanoestruturas , DNA/química , Eletrônica , Guanina , Conformação de Ácido Nucleico
5.
Adv Mater ; 33(8): e2006932, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33475220

RESUMO

Guanine quadruplex (G4)-DNA structures have sparked the interest of many scientists due to their important biological roles and their potential use in molecular nanoelectronics and nanotechnology. The high guanine content in G4-DNA endows it with mechanical stability, robustness, and improved charge transport properties-attractive attributes for a molecular nanowire. The self-driven formation of a novel G4-DNA-based nanostructure, coined guanine octuplex (G8)-DNA, is reported herein. Atomic force microscopy and scanning tunneling microscopy characterization of this molecule reveal its organized coiled-coil structure, which is found to be stable under different temperatures and surrounding conditions. G8-DNA exhibits enhanced stiffness, mechanical and thermodynamic stability when compared to its parent G4-DNA. These, along with its high guanine content, make G8-DNA a compelling new molecule, and a highly prospective candidate for molecular nanoelectronics.


Assuntos
DNA/química , Quadruplex G , Nanotecnologia , Nanoestruturas
6.
Nat Nanotechnol ; 15(10): 836-840, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32807877

RESUMO

Understanding charge transport in DNA molecules is a long-standing problem of fundamental importance across disciplines1,2. It is also of great technological interest due to DNA's ability to form versatile and complex programmable structures. Charge transport in DNA-based junctions has been reported using a wide variety of set-ups2-4, but experiments so far have yielded seemingly contradictory results that range from insulating5-8 or semiconducting9,10 to metallic-like behaviour11. As a result, the intrinsic charge transport mechanism in molecular junction set-ups is not well understood, which is mainly due to the lack of techniques to form reproducible and stable contacts with individual long DNA molecules. Here we report charge-transport measurements through single 30-nm-long double-stranded DNA (dsDNA) molecules with an experimental set-up that enables us to address individual molecules repeatedly and to measure the current-voltage characteristics from 5 K up to room temperature. Strikingly, we observed very high currents of tens of nanoamperes, which flowed through both homogeneous and non-homogeneous base-pair sequences. The currents are fairly temperature independent in the range 5-60 K and show a power-law decrease with temperature above 60 K, which is reminiscent of charge transport in organic crystals. Moreover, we show that the presence of even a single discontinuity ('nick') in both strands that compose the dsDNA leads to complete suppression of the current, which suggests that the backbones mediate the long-distance conduction in dsDNA, contrary to the common wisdom in DNA electronics2-4.


Assuntos
DNA/química , Condutividade Elétrica , Ouro/química , Nanoestruturas/química , Pareamento de Bases , Dimerização , Eletrônica , Elétrons , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Modelos Moleculares , Nanoestruturas/ultraestrutura , Conformação de Ácido Nucleico
7.
Nano Lett ; 20(6): 4505-4511, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32412760

RESUMO

Metal-mediated base-paired DNA has long been investigated for basic scientific pursuit and for nanoelectronics purposes. Particularly attractive in these domains is the Ag+-intercalated polycytosine DNA duplex. Extensive studies of this molecule have led to our current understanding of its self-assembly properties, high thermodynamic and structural stability, and high longitudinal conductivity. However, a high-resolution morphological characterization of long Ag+-intercalated polycytosine DNA has hitherto not been carried out. Furthermore, the electronic level structure of this molecule has not been studied before. Here we present a scanning tunneling microscopy and spectroscopy study of this intriguing nanowire. Its temperature-independent morphological and electronic properties suggest substantial stability, while its emergent electronic levels and energy gap provide the basis for its high conductivity.


Assuntos
Pareamento de Bases , DNA , Nanofios , Prata , Citosina , DNA/química , Eletrônica
8.
Nano Lett ; 19(9): 6600-6603, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31424224

RESUMO

Decades of crystallographic and NMR studies have produced canonical structural models of short DNA. However, no experimental method so far has been able to test these models in vivo, where DNA is long and constrained by interactions with membranes, proteins, and other molecules. Here, we employ high-resolution frequency-modulation AFM to image single long poly(dA)-poly(dT), poly(dG)-poly(dC), and lambda DNA molecules interacting with an underlying substrate that emulates the effect of biological constraints on molecular structure. We find systematic sequence-dependent variations in groove dimensions, indicating that the structure of DNA subject to realistic interactions may differ profoundly from canonical models. These findings highlight the value of AFM as a unique, single molecule characterization tool.


Assuntos
Bacteriófago lambda/química , DNA de Forma B/química , DNA Viral/química , Modelos Moleculares , Conformação de Ácido Nucleico , Poli dA-dT/química
9.
ACS Appl Mater Interfaces ; 11(38): 34645-34651, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31448887

RESUMO

We have demonstrated that designed ankyrin repeat protein (DARPin) _9-29, which specifically targets human epidermal growth factor receptor 2 (HER2), binds tightly to gold mini nanorods (GNRs). Molecular dynamic simulations showed that a single layer of DARPin_9-29 molecules is formed on the surface of the nanorod and that conjugation with the nanorod does not involve the protein's domain responsible for specific binding to HER2. The nanorod-DARPin (DARPin-GNR) conjugate is specifically bound (in nanomolar concentrations) to human breast adenocarcinoma SK-BR-3 cells overexpressing HER2. Illumination by near-infrared light (850 nm) led to almost complete eradication of the conjugate-treated SK-BR-3 cells; the viability of epithelial human breast cancer cells expressing normal amounts of the receptor was much less affected by the illumination. The results reported here pave the way toward application of DARPin-GNR conjugates in phototherapy of cancer.


Assuntos
Adenocarcinoma , Neoplasias da Mama , Sistemas de Liberação de Medicamentos , Ouro , Nanopartículas Metálicas , Nanotubos/química , Fototerapia , Receptor ErbB-2/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma/terapia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Feminino , Ouro/química , Ouro/farmacologia , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico
10.
Bioconjug Chem ; 30(8): 2201-2208, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31343869

RESUMO

Here, we report synthesis of long (thousands of base pairs), uniform double-stranded (ds) DNA comprising short (6-15 base pairs) tandem repeats. The synthesis method is based on self-assembly of short (6-15 bases) half-complementary 5'-end phosphorylated single-stranded oligonucleotides into long ds polymer molecules and covalent association of the oligonucleotide fragments in the polymer by DNA ligase to yield complete non-nicked ds DNA. The method is very flexible in regard to the sequence of the oligonucleotides and their length. Human telomeric DNA comprising thousands of base pairs as well as methylated, mismatched, and fluorescent dye-modified uniform dsDNA molecules can be synthesized. We have demonstrated by high resolution frequency-modulation atomic force microscopy that the structure of DNA containing mismatches is strongly different from that of the non-mismatched one. The DNA molecules comprising groups capable of anchoring metal particles and other redox active elements along the whole length of the nucleic acid polymer should find use as wires or transistors in future nanoelectronic applications.


Assuntos
DNA/síntese química , Nanoestruturas/química , Sequências de Repetição em Tandem , Pareamento Incorreto de Bases , DNA/química , DNA Ligases/metabolismo , Metais/metabolismo , Microscopia de Força Atômica , Conformação de Ácido Nucleico , Oligonucleotídeos/metabolismo , Telômero
11.
Adv Mater ; 30(41): e1706984, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29984432

RESUMO

Charge transport through molecular structures is interesting both scientifically and technologically. To date, DNA is the only type of polymer that transports significant currents over distances of more than a few nanometers in individual molecules. For molecular electronics, DNA derivatives are by far more promising than native DNA due to their improved charge-transport properties. Here, the synthesis of several unique DNA derivatives along with electrical characterization and theoretical models is surveyed. The derivatives include double stranded poly(G)-poly(C) DNA molecules, four stranded G4-DNA, metal-DNA hybrid molecular wires, and other DNA molecules that are modified either at the bases or at the backbone. The electrical characteristics of these nanostructures, studied experimentally by electrostatic force microscopy, conductive atomic force microscopy, and scanning tunneling microscopy and spectroscopy, are reviewed.


Assuntos
DNA/química , DNA/síntese química , Equipamentos e Provisões Elétricas , Metais/síntese química , Metais/química
12.
Eur J Pharm Biopharm ; 130: 296-305, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29959035

RESUMO

Since their discovery, liposomes have been widely employed in biomedical research. These nano-size spherical vesicles consisting one or few phospholipid bilayers surrounding an aqueous core are capable of carrying a wide variety of bioactive compounds, including drugs, peptides, nucleic acids, proteins and others. Despite considerable success achieved in synthesis of liposome constructs containing bioactive compounds, preparation of ligand-targeted liposomes comprising large quantities of encapsulated proteins that are capable of affecting pathological cells still remains a big challenge. Here we described a novel method for preparation of small (80-90 nm in diameter) unilamellar liposomes containing very large quantities (thousands of protein molecules per liposome) of heme-containing cytochrome c, highly fluorescent mCherry and highly toxic PE40 (Pseudomonas aeruginosa Exotoxin A domain). Efficient encapsulation of the proteins was achieved through electrostatic interaction between positively charged proteins (at pH lower than pI) and negatively charged liposome membrane. The proteoliposomes containing large quantities of mCherry or PE40 and functionalized with designed ankyrin repeat protein (DARPin)_9-29, which targets human epidermal growth factor receptor 2 (HER2) were shown to specifically stain and kill in sub-nanomolar concentrations HER2-positive cells, overexpressing HER2, respectively. Specific staining and eradication of the receptor-positive cells demonstrated here makes the DARPin-functionalized liposomes carrying large quantities of fluorescent and/or toxic proteins a promising candidate for tumor detection and therapy.


Assuntos
ADP Ribose Transferases/administração & dosagem , Repetição de Anquirina/genética , Toxinas Bacterianas/administração & dosagem , Citocromos c/administração & dosagem , Exotoxinas/administração & dosagem , Proteínas Luminescentes/administração & dosagem , Fatores de Virulência/administração & dosagem , ADP Ribose Transferases/química , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Animais , Toxinas Bacterianas/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Citocromos c/química , Exotoxinas/química , Feminino , Heme/química , Humanos , Lipossomos , Proteínas Luminescentes/química , Neoplasias Ovarianas , Tamanho da Partícula , Receptor ErbB-2/metabolismo , Fatores de Virulência/química , Proteína Vermelha Fluorescente , Exotoxina A de Pseudomonas aeruginosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA