Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 169, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167818

RESUMO

Superconductor/semiconductor hybrid devices have attracted increasing interest in the past years. Superconducting electronics aims to complement semiconductor technology, while hybrid architectures are at the forefront of new ideas such as topological superconductivity and protected qubits. In this work, we engineer the induced superconductivity in two-dimensional germanium hole gas by varying the distance between the quantum well and the aluminum. We demonstrate a hard superconducting gap and realize an electrically and flux tunable superconducting diode using a superconducting quantum interference device (SQUID). This allows to tune the current phase relation (CPR), to a regime where single Cooper pair tunneling is suppressed, creating a [Formula: see text] CPR. Shapiro experiments complement this interpretation and the microwave drive allows to create a diode with ≈ 100% efficiency. The reported results open up the path towards integration of spin qubit devices, microwave resonators and (protected) superconducting qubits on  the same silicon technology compatible platform.

2.
Nature ; 612(7940): 442-447, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36517713

RESUMO

Hybrid semiconductor-superconductor devices hold great promise for realizing topological quantum computing with Majorana zero modes1-5. However, multiple claims of Majorana detection, based on either tunnelling6-10 or Coulomb blockade (CB) spectroscopy11,12, remain disputed. Here we devise an experimental protocol that allows us to perform both types of measurement on the same hybrid island by adjusting its charging energy via tunable junctions to the normal leads. This method reduces ambiguities of Majorana detections by checking the consistency between CB spectroscopy and zero-bias peaks in non-blockaded transport. Specifically, we observe junction-dependent, even-odd modulated, single-electron CB peaks in InAs/Al hybrid nanowires without concomitant low-bias peaks in tunnelling spectroscopy. We provide a theoretical interpretation of the experimental observations in terms of low-energy, longitudinally confined island states rather than overlapping Majorana modes. Our results highlight the importance of combined measurements on the same device for the identification of topological Majorana zero modes.

3.
Phys Rev Lett ; 128(12): 126803, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35394319

RESUMO

The spin-orbit interaction permits to control the state of a spin qubit via electric fields. For holes it is particularly strong, allowing for fast all electrical qubit manipulation, and yet an in-depth understanding of this interaction in hole systems is missing. Here we investigate, experimentally and theoretically, the effect of the cubic Rashba spin-orbit interaction on the mixing of the spin states by studying singlet-triplet oscillations in a planar Ge hole double quantum dot. Landau-Zener sweeps at different magnetic field directions allow us to disentangle the effects of the spin-orbit induced spin-flip term from those caused by strongly site-dependent and anisotropic quantum dot g tensors. Our work, therefore, provides new insights into the hole spin-orbit interaction, necessary for optimizing future qubit experiments.

4.
Science ; 373(6550): 82-88, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34210881

RESUMO

A semiconducting nanowire fully wrapped by a superconducting shell has been proposed as a platform for obtaining Majorana modes at small magnetic fields. In this study, we demonstrate that the appearance of subgap states in such structures is actually governed by the junction region in tunneling spectroscopy measurements and not the full-shell nanowire itself. Short tunneling regions never show subgap states, whereas longer junctions always do. This can be understood in terms of quantum dots forming in the junction and hosting Andreev levels in the Yu-Shiba-Rusinov regime. The intricate magnetic field dependence of the Andreev levels, through both the Zeeman and Little-Parks effects, may result in robust zero-bias peaks-features that could be easily misinterpreted as originating from Majorana zero modes but are unrelated to topological superconductivity.

5.
Nat Mater ; 20(8): 1106-1112, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34083775

RESUMO

Spin qubits are considered to be among the most promising candidates for building a quantum processor. Group IV hole spin qubits are particularly interesting owing to their ease of operation and compatibility with Si technology. In addition, Ge offers the option for monolithic superconductor-semiconductor integration. Here, we demonstrate a hole spin qubit operating at fields below 10 mT, the critical field of Al, by exploiting the large out-of-plane hole g-factors in planar Ge and by encoding the qubit into the singlet-triplet states of a double quantum dot. We observe electrically controlled g-factor difference-driven and exchange-driven rotations with tunable frequencies exceeding 100 MHz and dephasing times of 1 µs, which we extend beyond 150 µs using echo techniques. These results demonstrate that Ge hole singlet-triplet qubits are competing with state-of-the-art GaAs and Si singlet-triplet qubits. In addition, their rotation frequencies and coherence are comparable with those of Ge single spin qubits, but singlet-triplet qubits can be operated at much lower fields, emphasizing their potential for on-chip integration with superconducting technologies.

6.
Nano Lett ; 20(7): 5201-5206, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32479090

RESUMO

Using inelastic cotunneling spectroscopy we observe a zero field splitting within the spin triplet manifold of Ge hut wire quantum dots. The states with spin ±1 in the confinement direction are energetically favored by up to 55 µeV compared to the spin 0 triplet state because of the strong spin-orbit coupling. The reported effect should be observable in a broad class of strongly confined hole quantum-dot systems and might need to be considered when operating hole spin qubits.

7.
Adv Mater ; 32(16): e1906523, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32105375

RESUMO

Semiconductor nanowires have been playing a crucial role in the development of nanoscale devices for the realization of spin qubits, Majorana fermions, single photon emitters, nanoprocessors, etc. The monolithic growth of site-controlled nanowires is a prerequisite toward the next generation of devices that will require addressability and scalability. Here, combining top-down nanofabrication and bottom-up self-assembly, the growth of Ge wires on prepatterned Si (001) substrates with controllable position, distance, length, and structure is reported. This is achieved by a novel growth process that uses a SiGe strain-relaxation template and can be potentially generalized to other material combinations. Transport measurements show an electrically tunable spin-orbit coupling, with a spin-orbit length similar to that of III-V materials. Also, charge sensing between quantum dots in closely spaced wires is observed, which underlines their potential for the realization of advanced quantum devices. The reported results open a path toward scalable qubit devices using nanowires on silicon.

8.
Nano Lett ; 18(11): 7141-7145, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30359041

RESUMO

The strong atomistic spin-orbit coupling of holes makes single-shot spin readout measurements difficult because it reduces the spin lifetimes. By integrating the charge sensor into a high bandwidth radio frequency reflectometry setup, we were able to demonstrate single-shot readout of a germanium quantum dot hole spin and measure the spin lifetime. Hole spin relaxation times of about 90 µs at 500 mT are reported, with a total readout visibility of about 70%. By analyzing separately the spin-to-charge conversion and charge readout fidelities, we have obtained insight into the processes limiting the visibilities of hole spins. The analyses suggest that high hole visibilities are feasible at realistic experimental conditions, underlying the potential of hole spins for the realization of viable qubit devices.

9.
Nat Commun ; 9(1): 3902, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30254225

RESUMO

Holes confined in quantum dots have gained considerable interest in the past few years due to their potential as spin qubits. Here we demonstrate two-axis control of a spin 3/2 qubit in natural Ge. The qubit is formed in a hut wire double quantum dot device. The Pauli spin blockade principle allowed us to demonstrate electric dipole spin resonance by applying a radio frequency electric field to one of the electrodes defining the double quantum dot. Coherent hole spin oscillations with Rabi frequencies reaching 140 MHz are demonstrated and dephasing times of 130 ns are measured. The reported results emphasize the potential of Ge as a platform for fast and electrically tunable hole spin qubit devices.

10.
Nano Lett ; 17(9): 5706-5710, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28795821

RESUMO

Heavy holes confined in quantum dots are predicted to be promising candidates for the realization of spin qubits with long coherence times. Here we focus on such heavy-hole states confined in germanium hut wires. By tuning the growth density of the latter we can realize a T-like structure between two neighboring wires. Such a structure allows the realization of a charge sensor, which is electrostatically and tunnel coupled to a quantum dot, with charge-transfer signals as high as 0.3 e. By integrating the T-like structure into a radiofrequency reflectometry setup, single-shot measurements allowing the extraction of hole tunneling times are performed. The extracted tunneling times of less than 10 µs are attributed to the small effective mass of Ge heavy-hole states and pave the way toward projective spin readout measurements.

11.
Nano Lett ; 16(11): 6879-6885, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27656760

RESUMO

Hole spins have gained considerable interest in the past few years due to their potential for fast electrically controlled qubits. Here, we study holes confined in Ge hut wires, a so-far unexplored type of nanostructure. Low-temperature magnetotransport measurements reveal a large anisotropy between the in-plane and out-of-plane g-factors of up to 18. Numerical simulations verify that this large anisotropy originates from a confined wave function of heavy-hole character. A light-hole admixture of less than 1% is estimated for the states of lowest energy, leading to a surprisingly large reduction of the out-of-plane g-factors compared with those for pure heavy holes. Given this tiny light-hole contribution, the spin lifetimes are expected to be very long, even in isotopically nonpurified samples.

12.
Phys Rev Lett ; 109(18): 186802, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23215310

RESUMO

We studied the low-energy states of spin-1/2 quantum dots defined in InAs/InP nanowires and coupled to aluminum superconducting leads. By varying the superconducting gap Δ with a magnetic field B we investigated the transition from strong coupling Δ << T(K) to weak-coupling Δ >> T(K), where T(K) is the Kondo temperature. Below the critical field, we observe a persisting zero-bias Kondo resonance that vanishes only for low B or higher temperatures, leaving the room to more robust subgap structures at bias voltages between Δ and 2Δ. For strong and approximately symmetric tunnel couplings, a Josephson supercurrent is observed in addition to the Kondo peak. We ascribe the coexistence of a Kondo resonance and a superconducting gap to a significant density of intragap quasiparticle states, and the finite-bias subgap structures to tunneling through Shiba states. Our results, supported by numerical calculations, own relevance also in relation to tunnel-spectroscopy experiments aiming at the observation of Majorana fermions in hybrid nanostructures.

13.
Nano Lett ; 12(6): 3074-9, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22594644

RESUMO

We report on the electronic transport properties of multiple-gate devices fabricated from undoped silicon nanowires. Understanding and control of the relevant transport mechanisms was achieved by means of local electrostatic gating and temperature-dependent measurements. The roles of the source/drain contacts and of the silicon channel could be independently evaluated and tuned. Wrap gates surrounding the silicide-silicon contact interfaces were proved to be effective in inducing a full suppression of the contact Schottky barriers, thereby enabling carrier injection down to liquid helium temperature. By independently tuning the effective Schottky barrier heights, a variety of reconfigurable device functionalities could be obtained. In particular, the same nanowire device could be configured to work as a Schottky barrier transistor, a Schottky diode, or a p-n diode with tunable polarities. This versatility was eventually exploited to realize a NAND logic gate with gain well above one.


Assuntos
Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/instrumentação , Semicondutores , Processamento de Sinais Assistido por Computador/instrumentação , Silício/química , Transistores Eletrônicos , Desenho de Equipamento , Análise de Falha de Equipamento
14.
ACS Nano ; 5(9): 7117-23, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21815658

RESUMO

We report on a technique enabling electrical control of the contact silicidation process in silicon nanowire devices. Undoped silicon nanowires were contacted by pairs of nickel electrodes, and each contact was selectively silicided by means of the Joule effect. By a real-time monitoring of the nanowire electrical resistance during the contact silicidation process we were able to fabricate nickel-silicide/silicon/nickel-silicide devices with controlled silicon channel length down to 8 nm.

15.
Nano Lett ; 8(5): 1404-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18376870

RESUMO

Scanning probe microscopy combined with selective wet chemical etching is employed to quantitatively determine the full three-dimensional (3D) composition profiles of single strained SiGe/Si(001) islands. The technique allows us to simultaneously obtain 3D profiles for both coherent and dislocated islands and to collect data with large statistics. Lateral and vertical composition gradients are observed, and their origin is discussed. X-ray scattering measurements performed on a large sample area are used to validate the results.


Assuntos
Imageamento Tridimensional/métodos , Teste de Materiais/métodos , Microscopia de Varredura por Sonda/métodos , Nanotecnologia/métodos , Pontos Quânticos , Tomografia Óptica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...