Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38083429

RESUMO

We have developed a novel composite filler with Poly(3,4-ethylenedioxythiophene) : poly(styrenesulfonic acid) (PEDOT:PSS), a biocompatible organic conductive polymer, adsorbed on carbon particles for biological electrodes. This composite filler enables to fabricate high-performance biological electrodes simply by adding it to resin in the same way as conventional conductive fillers. The fabricated electrodes achieve ion exchange properties similar to those of PEDOT:PSS polymers and therefore low skin and electrode contact impedance. Electroencephalogram (EEG) measurements show that these electrodes capture various brain activities and exhibit high correlation (≥ 0.9) to commercially available wet and AgCl electrodes. Additionally, each electrode can be molded into various shapes and structures while retaining its electrode characteristics. Therefore, the proposed electrode is promising for EEG measurement, which requires high comfort and signal quality.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Polímeros , Compostos Bicíclicos Heterocíclicos com Pontes/química , Eletrodos , Polímeros/química , Condutividade Elétrica , Eletroencefalografia
2.
Inorg Chem ; 43(19): 6075-82, 2004 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-15360259

RESUMO

Three newly prepared [Ni(mnt)2] complexes, (HMTTF)[Ni(mnt)2], (ChSTF)[Ni(mnt)2], and (DBTTF)2[Ni(mnt)2], are reported (DBTTF = dibenzotetrathiafulvalene, ChSTF = 2,3-cyclohexylenedithio-1,4-dithia-5,8-diselanafulvalene, HMTTF = bis(trimethylene)-tetrathiafulvalene, and mnt = maleonitrile dithiolate). The former two compounds have usual DA-type (D = donor, A = acceptor) mixed stacks, whereas the DBTTF complex has DDDDAA-type 6-fold columns. These compounds are electrical insulators, but the HMTTF and ChSTF complexes exhibit chiT minima at 16 and 55 K, respectively, followed by chiT peaks at 8 and 16 K. Below these temperatures the ESR signal disappears, indicating antiferromagnetic transitions. The origin of the ferromagnetic interaction is explained either from the difference of the g values between the donor and the anion or from the intrinsic ferromagnetic interaction of the [Ni(mnt)2] anions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA