Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 353: 216-228, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410615

RESUMO

The production of reactive oxygen species (ROS) during and after the onset of an ischemic stroke induces neuronal cell death and severely damages brain function. Therefore, reducing ROS by administrating antioxidant compounds is a promising approach to improving ischemic symptoms. Alpha-mangostin (α-M) is an antioxidant compound extracted from the pericarp of the mangosteen fruit. Reportedly, α-M decreases neuronal toxicity in primary rat cerebral cortical neurons. In this study, we investigated the neuroprotective activity of α-M in both in vitro and in vivo assays. Pretreatment with α-M inhibited excessive cellular ROS production after oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro using an SH-SY5Y (human neuroblastoma) cell line. In addition, α-M maintained mitochondrial membrane potential and suppressed mitochondrial-specific ROS production induced by OGD/R. Meanwhile, the low bioavailability of α-M due to its poor water solubility has been an insuperable obstruction impeding extensive investigations of the biological functions of α-M and its medical applications. To overcome this problem, we synthesized a cyclodextrin-based nanoparticle (CDNP) that is known to increase the loading efficiency and binding constant of α-M, compared with cyclodextrins themselves. This nano-formulated α-M (α-M/CDNP) was optimized for an in vivo ischemic stroke model. Our results indicated that α-M/CDNP (25 mg/kg/injection) reduced infarct volume and improved neurological behavior (p = 0.036 and p = 0.046, respectively). These in vivo results suggest that α-M appears to cross the blood-brain barrier (BBB) with the help of a nano-formulation with CDNP. Combining an in vitro BBB model and a physicochemical binding assay between α-M and albumin, it is speculated that α-M released from CDNP would interact with albumin during its prolonged circulation in the blood, and the resultant α-M/albumin complex may cross the BBB through the absorptive-mediated transcytosis pathway. These findings suggest the potential clinical application of α-M in ischemic stroke treatment.


Assuntos
Isquemia Encefálica , Ciclodextrinas , AVC Isquêmico , Neuroblastoma , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Humanos , Animais , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Oxigênio/uso terapêutico , Glucose/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/metabolismo , Apoptose
2.
ACS Omega ; 7(13): 10890-10900, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35415377

RESUMO

We report that the polymerization of cyclodextrin (CD) with epichlorohydrin (ECH) dramatically increases the binding constant of CD to vanillin, from 55 to 8.4 × 103 M-1, by approximately 100 times, as determined by diffusion ordered spectroscopy (DOSY)-1H NMR. The binding constant increased with an increase of the ECH content of the polymer, although ECH polymers without CDs showed no affinity at all, suggesting that the hydrophobicity of the ECH network outside of CDs helps to enhance the binding. This increased binding constant allows CD-ECH polymers to increase the drug loading ratio, which may be one of the most critical issues for drug delivery systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA