Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Stem Cells Transl Med ; 5(2): 164-74, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26683871

RESUMO

Several progenitor cell populations have been reported to exist in hearts that play a role in cardiac turnover and/or repair. Despite the presence of cardiac stem and progenitor cells within the myocardium, functional repair of the heart after injury is inadequate. Identification of the signaling pathways involved in the expansion and differentiation of cardiac progenitor cells (CPCs) will broaden insight into the fundamental mechanisms playing a role in cardiac homeostasis and disease and might provide strategies for in vivo regenerative therapies. To understand and exploit cardiac ontogeny for drug discovery efforts, we developed an in vitro human induced pluripotent stem cell-derived CPC model system using a highly enriched population of KDR(pos)/CKIT(neg)/NKX2.5(pos) CPCs. Using this model system, these CPCs were capable of generating highly enriched cultures of cardiomyocytes under directed differentiation conditions. In order to facilitate the identification of pathways and targets involved in proliferation and differentiation of resident CPCs, we developed phenotypic screening assays. Screening paradigms for therapeutic applications require a robust, scalable, and consistent methodology. In the present study, we have demonstrated the suitability of these cells for medium to high-throughput screens to assess both proliferation and multilineage differentiation. Using this CPC model system and a small directed compound set, we identified activin-like kinase 5 (transforming growth factor-ß type 1 receptor kinase) inhibitors as novel and potent inducers of human CPC differentiation to cardiomyocytes. Significance: Cardiac disease is a leading cause of morbidity and mortality, with no treatment available that can result in functional repair. This study demonstrates how differentiation of induced pluripotent stem cells can be used to identify and isolate cell populations of interest that can translate to the adult human heart. Two separate examples of phenotypic screens are discussed, demonstrating the value of this biologically relevant and reproducible technology. In addition, this assay system was able to identify novel and potent inducers of differentiation and proliferation of induced pluripotent stem cell-derived cardiac progenitor cells.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Biomarcadores/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Expressão Gênica , Ensaios de Triagem em Larga Escala , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Fenótipo , Plasmídeos/química , Plasmídeos/metabolismo , Cultura Primária de Células , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-kit/deficiência , Proteínas Proto-Oncogênicas c-kit/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Bibliotecas de Moléculas Pequenas/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
2.
PLoS One ; 9(9): e108051, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25255322

RESUMO

Cardiac hypertrophy is an independent risk factor for cardiovascular disease and heart failure. There is increasing evidence that microRNAs (miRNAs) play an important role in the regulation of messenger RNA (mRNA) and the pathogenesis of various cardiovascular diseases. However, the ability to comprehensively study cardiac hypertrophy on a gene regulatory level is impacted by the limited availability of human cardiomyocytes. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer the opportunity for disease modeling. Here we utilize a previously established in vitro model of cardiac hypertrophy to interrogate the regulatory mechanism associated with the cardiac disease process. We perform miRNA sequencing and mRNA expression analysis on endothelin 1 (ET-1) stimulated hiPSC-CMs to describe associated RNA expression profiles. MicroRNA sequencing revealed over 250 known and 34 predicted novel miRNAs to be differentially expressed between ET-1 stimulated and unstimulated control hiPSC-CMs. Messenger RNA expression analysis identified 731 probe sets with significant differential expression. Computational target prediction on significant differentially expressed miRNAs and mRNAs identified nearly 2000 target pairs. A principal component analysis approach comparing the in vitro data with human myocardial biopsies detected overlapping expression changes between the in vitro samples and myocardial biopsies with Left Ventricular Hypertrophy. These results provide further insights into the complex RNA regulatory mechanism associated with cardiac hypertrophy.


Assuntos
Cardiomegalia/patologia , Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Humanos , MicroRNAs/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
3.
Nat Biotechnol ; 32(10): 1026-35, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25240927

RESUMO

The epicardium supports cardiomyocyte proliferation early in development and provides fibroblasts and vascular smooth muscle cells to the developing heart. The epicardium has been shown to play an important role during tissue remodeling after cardiac injury, making access to this cell lineage necessary for the study of regenerative medicine. Here we describe the generation of epicardial lineage cells from human pluripotent stem cells by stage-specific activation of the BMP and WNT signaling pathways. These cells display morphological characteristics and express markers of the epicardial lineage, including the transcription factors WT1 and TBX18 and the retinoic acid-producing enzyme ALDH1A2. When induced to undergo epithelial-to-mesenchymal transition, the cells give rise to populations that display characteristics of the fibroblast and vascular smooth muscle lineages. These findings identify BMP and WNT as key regulators of the epicardial lineage in vitro and provide a model for investigating epicardial function in human development and disease.


Assuntos
Linhagem da Célula/fisiologia , Pericárdio/citologia , Células-Tronco Pluripotentes/citologia , Aldeído Desidrogenase/metabolismo , Animais , Proteína Morfogenética Óssea 4/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Camundongos , Miócitos Cardíacos/citologia , Via de Sinalização Wnt/fisiologia
4.
Cell ; 151(1): 206-20, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22981692

RESUMO

Heart development is exquisitely sensitive to the precise temporal regulation of thousands of genes that govern developmental decisions during differentiation. However, we currently lack a detailed understanding of how chromatin and gene expression patterns are coordinated during developmental transitions in the cardiac lineage. Here, we interrogated the transcriptome and several histone modifications across the genome during defined stages of cardiac differentiation. We find distinct chromatin patterns that are coordinated with stage-specific expression of functionally related genes, including many human disease-associated genes. Moreover, we discover a novel preactivation chromatin pattern at the promoters of genes associated with heart development and cardiac function. We further identify stage-specific distal enhancer elements and find enriched DNA binding motifs within these regions that predict sets of transcription factors that orchestrate cardiac differentiation. Together, these findings form a basis for understanding developmentally regulated chromatin transitions during lineage commitment and the molecular etiology of congenital heart disease.


Assuntos
Epigênese Genética , Redes Reguladoras de Genes , Miocárdio/citologia , Animais , Diferenciação Celular , Cromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos , Coração/embriologia , Humanos , Camundongos , Fatores de Transcrição/metabolismo , Transcriptoma
5.
Cell Stem Cell ; 8(2): 228-40, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21295278

RESUMO

Efficient differentiation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) to a variety of lineages requires step-wise approaches replicating the key commitment stages found during embryonic development. Here we show that expression of PdgfR-α segregates mouse ESC-derived Flk-1 mesoderm into Flk-1(+)PdgfR-α(+) cardiac and Flk-1(+)PdgfR-α(-) hematopoietic subpopulations. By monitoring Flk-1 and PdgfR-α expression, we found that specification of cardiac mesoderm and cardiomyocytes is determined by remarkably small changes in levels of Activin/Nodal and BMP signaling. Translation to human ESCs and iPSCs revealed that the emergence of cardiac mesoderm could also be monitored by coexpression of KDR and PDGFR-α and that this process was similarly dependent on optimal levels of Activin/Nodal and BMP signaling. Importantly, we found that individual mouse and human pluripotent stem cell lines require optimization of these signaling pathways for efficient cardiac differentiation, illustrating a principle that may well apply in other contexts.


Assuntos
Ativinas/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteína Nodal/metabolismo , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular/fisiologia , Citometria de Fluxo , Humanos , Camundongos , Células-Tronco Pluripotentes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
J Cardiovasc Transl Res ; 4(1): 66-72, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21061105

RESUMO

Moving from the bench to the bedside is an expensive and arduous journey with a high risk of failure. One roadblock on the path of translational medicine is the paucity of predictive in vitro models available during preclinical drug development. The ability of human embryonic stem (ES) and induced pluripotent stem (iPS) cells to generate virtually any tissue of the body, in vitro, makes these cells an obvious choice for use in drug discovery and translational medicine. Technological advancements in the production of stem cells and their differentiation into relevant cell types, such as cardiomyocytes, has permitted the utility of these cells in the translational medicine setting. In particular, the derivation and differentiation of patient-specific iPS cells will facilitate an understanding of basic disease etiology, enable better drug efficacy and safety screens, and ultimately lead to personalized patient therapies. This review will focus on recent advancements in the derivation and differentiation of human ES and iPS cells into cardiomyocytes and their uses in safety testing and modeling human disease.


Assuntos
Doenças Cardiovasculares/cirurgia , Células-Tronco Embrionárias/transplante , Células-Tronco Pluripotentes Induzidas/transplante , Miócitos Cardíacos/transplante , Transplante de Células-Tronco , Pesquisa Translacional Biomédica , Animais , Doenças Cardiovasculares/patologia , Diferenciação Celular , Proliferação de Células , Humanos , Transplante de Células-Tronco/efeitos adversos , Resultado do Tratamento
7.
Proc Natl Acad Sci U S A ; 107(8): 3329-34, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-19846783

RESUMO

Myocardial infarction resulting in irreversible loss of cardiomyocytes (CMs) remains a leading cause of heart failure. Although cell transplantation has modestly improved cardiac function, major challenges including increasing cell survival, engraftment, and functional integration with host tissue, remain. Embryonic stem cells (ESCs), which can be differentiated into cardiac progenitors (CPs) and CMs, represent a candidate cell source for cardiac cell therapy. However, it is not known what specific cell type or condition is the most appropriate for transplantation. This problem is exasperated by the lack of efficient and predictive strategies to screen the large numbers of parameters that may impact cell transplantation. We used a cardiac tissue model, engineered heart tissue (EHT), and quantitative molecular and electrophysiological analyses, to test transplantation conditions and specific cell populations for their potential to functionally integrate with the host tissue. In this study, we validated our analytical platform using contractile mouse neonatal CMs (nCMs) and noncontractile cardiac fibroblasts (cFBs), and screened for the integration potential of ESC-derived CMs and CPs (ESC-CMs and -CPs). Consistent with previous in vivo studies, cFB injection interfered with electrical signal propagation, whereas injected nCMs improved tissue function. Purified bioreactor-generated ESC-CMs exhibited a diminished capacity for electrophysiological integration; a result correlated with lower (compared with nCMs) connexin 43 expression. ESC-CPs, however, appeared able to appropriately mature and integrate into EHT, enhancing the amplitude of tissue contraction. Our results support the use of EHT as a model system to accelerate development of cardiac cell therapy strategies.


Assuntos
Insuficiência Cardíaca/cirurgia , Mioblastos Cardíacos/fisiologia , Contração Miocárdica , Células-Tronco Pluripotentes/citologia , Engenharia Tecidual/métodos , Animais , Reatores Biológicos , Diferenciação Celular , Conexina 43/biossíntese , Fenômenos Eletrofisiológicos , Fibroblastos/fisiologia , Insuficiência Cardíaca/etiologia , Camundongos , Camundongos Transgênicos , Mioblastos Cardíacos/metabolismo , Mioblastos Cardíacos/transplante , Infarto do Miocárdio/complicações , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/cirurgia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Ratos , Ratos Sprague-Dawley
8.
JACC Cardiovasc Imaging ; 2(9): 1114-22, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19761992

RESUMO

OBJECTIVES: The aim of the current study is to test the ability to label and detect murine embryonic stem cell-derived cardiovascular progenitor cells (ES-CPC) with cardiac magnetic resonance (CMR) using the novel contrast agent Gadofluorine M-Cy3 (GdFM-Cy3). BACKGROUND: Cell therapy shows great promise for the treatment of cardiovascular disease. An important limitation to previous clinical studies is the inability to accurately identify transplanted cells. GdFM-Cy3 is a lipophilic paramagnetic contrast agent that contains a perfluorinated side chain and an amphiphilic character that allows for micelle formation in an aqueous solution. Previous studies reported that it is easily taken up and stored within the cytosol of mesenchymal stem cells, thereby allowing for paramagnetic cell labeling. Investigators in our laboratory have recently developed techniques for the robust generation of ES-CPC. We reasoned that GdFM-Cy3 would be a promising agent for the in vivo detection of these cells after cardiac cell transplantation. METHODS: ES-CPC were labeled with GdFM-Cy3 by incubation. In vitro studies were performed to assess the impact of GdFM-Cy3 on cell function and survival. A total of 500,000 GdFM-Cy3-labeled ES-CPC or control ES-CPC were injected into the myocardium of mice with and without myocardial infarction. Mice were imaged (9.4-T) before and over a 2-week time interval after stem cell transplantation. Mice were then euthanized, and their hearts were sectioned for fluorescence microscopy. RESULTS: In vitro studies demonstrated that GdFM-Cy3 was easily transfectable, nontoxic, stayed within cells after labeling, and could be visualized using CMR and fluorescence microscopy. In vivo studies confirmed the efficacy of the agent for the detection of cells transplanted into the hearts of mice after myocardial infarction. A correspondence between CMR and histology was observed. CONCLUSIONS: The results of the current study suggest that it is possible to identify and potentially track GdFM-Cy3-labeled ES-CPC in murine infarct models via CMR.


Assuntos
Carbocianinas/metabolismo , Meios de Contraste/metabolismo , Células-Tronco Embrionárias/transplante , Corantes Fluorescentes/metabolismo , Transplante de Células-Tronco Mesenquimais , Infarto do Miocárdio/cirurgia , Miocárdio/patologia , Miócitos Cardíacos/transplante , Compostos Organometálicos/metabolismo , Coloração e Rotulagem/métodos , Animais , Carbocianinas/toxicidade , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Meios de Contraste/toxicidade , Modelos Animais de Doenças , Células-Tronco Embrionárias/metabolismo , Feminino , Corantes Fluorescentes/toxicidade , Fluorocarbonos , Imageamento por Ressonância Magnética , Camundongos , Camundongos SCID , Microscopia de Fluorescência , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Compostos Organometálicos/toxicidade , Fatores de Tempo
9.
Nature ; 453(7194): 524-8, 2008 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-18432194

RESUMO

The functional heart is comprised of distinct mesoderm-derived lineages including cardiomyocytes, endothelial cells and vascular smooth muscle cells. Studies in the mouse embryo and the mouse embryonic stem cell differentiation model have provided evidence indicating that these three lineages develop from a common Flk-1(+) (kinase insert domain protein receptor, also known as Kdr) cardiovascular progenitor that represents one of the earliest stages in mesoderm specification to the cardiovascular lineages. To determine whether a comparable progenitor is present during human cardiogenesis, we analysed the development of the cardiovascular lineages in human embryonic stem cell differentiation cultures. Here we show that after induction with combinations of activin A, bone morphogenetic protein 4 (BMP4), basic fibroblast growth factor (bFGF, also known as FGF2), vascular endothelial growth factor (VEGF, also known as VEGFA) and dickkopf homolog 1 (DKK1) in serum-free media, human embryonic-stem-cell-derived embryoid bodies generate a KDR(low)/C-KIT(CD117)(neg) population that displays cardiac, endothelial and vascular smooth muscle potential in vitro and, after transplantation, in vivo. When plated in monolayer cultures, these KDR(low)/C-KIT(neg) cells differentiate to generate populations consisting of greater than 50% contracting cardiomyocytes. Populations derived from the KDR(low)/C-KIT(neg) fraction give rise to colonies that contain all three lineages when plated in methylcellulose cultures. Results from limiting dilution studies and cell-mixing experiments support the interpretation that these colonies are clones, indicating that they develop from a cardiovascular colony-forming cell. Together, these findings identify a human cardiovascular progenitor that defines one of the earliest stages of human cardiac development.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Miócitos Cardíacos/citologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ativinas/farmacologia , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem da Célula/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/transplante , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas c-kit/genética , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/deficiência , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
10.
Trends Cardiovasc Med ; 17(7): 240-6, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17936206

RESUMO

The fully formed heart is composed of diverse cell lineages including myocytes, endothelial cells, vascular smooth muscle cells, and fibroblasts that derive from distinct subsets of mesoderm during embryonic development. Findings from lineage tracing studies indicate that cardiomyocytes develop from cells that express fetal liver kinase-1, suggesting that the cardiac lineages may arise from a progenitor cell with vascular cardiomyocyte potential. Recent studies using the embryonic stem cell model have led to the identification of a fetal liver kinase-1(+) progenitor cell that displays both vascular and cardiomyocyte potential. A comparable progenitor was also isolated from the early mouse embryo. Identification and isolation of these cardiovascular progenitor cells establishes a new model of heart development that will provide insights into the mechanisms regulating cardiovascular lineage diversification. These progenitor cells may also represent a novel cell population for models of congenital heart disease and cell replacement therapy.


Assuntos
Sistema Cardiovascular/citologia , Desenvolvimento Embrionário , Células-Tronco Embrionárias/citologia , Coração/crescimento & desenvolvimento , Miocárdio/citologia , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Sistema Cardiovascular/crescimento & desenvolvimento , Diferenciação Celular , Células-Tronco Embrionárias/fisiologia , Humanos , Miócitos Cardíacos/fisiologia , Células-Tronco Pluripotentes/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia
11.
Dev Cell ; 11(5): 723-32, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17084363

RESUMO

Cell-tracing studies in the mouse indicate that the cardiac lineage arises from a population that expresses the vascular endothelial growth factor receptor 2 (VEGFR2, Flk-1), suggesting that it may develop from a progenitor with vascular potential. Using the embryonic stem (ES) cell differentiation model, we have identified a cardiovascular progenitor based on the temporal expression of the primitive streak (PS) marker brachyury and Flk-1. Comparable progenitors could also be isolated from head-fold stage embryos. When cultured with cytokines known to function during cardiogenesis, individual cardiovascular progenitors generated colonies that displayed cardiomyocyte, endothelial, and vascular smooth muscle (VSM) potential. Isolation and characterization of this previously unidentified population suggests that the mammalian cardiovascular system develops from multipotential progenitors.


Assuntos
Células-Tronco Embrionárias/citologia , Células Endoteliais/citologia , Células-Tronco Multipotentes/citologia , Músculo Liso Vascular/citologia , Miócitos Cardíacos/citologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Sistema Cardiovascular/citologia , Sistema Cardiovascular/embriologia , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Proteínas Fetais/metabolismo , Camundongos , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/biossíntese
12.
Eur J Immunol ; 35(7): 2051-60, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15915541

RESUMO

Thymocyte positive and negative selection are dependent on avidity-driven TCR-mediated recognition events in the thymus. High-avidity recognition events result in negative selection, while low-avidity recognition events result in positive selection. However, it has not been established how thymocytes maturation stages affect their responses to TCR signals of different avidities. We gained insight into this question when we reduced thymocyte selection to an in vitro system, in which full maturation of developmentally synchronized immature double-positive thymocytes was induced on a cloned line of thymic epithelial cells. Our analysis of the kinetics of thymocyte development supports a multi-phasic model of thymic selection. In it, thymocyte maturation stages as well as interaction avidity control the outcome TCR stimulation. Positive selection is initiated during a primary recognition event that proceeds independently of the TCR avidity. During a secondary recognition event the final fate of thymocyte, full maturation versus negative selection, is determined by TCR avidity.


Assuntos
Diferenciação Celular/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Timo/imunologia , Animais , Desoxiguanosina/metabolismo , Epitélio/imunologia , Epitélio/metabolismo , Imunidade Celular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/genética , Timo/citologia , Timo/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...