Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
J Ovarian Res ; 17(1): 94, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704607

RESUMO

BACKGROUND: Genetic studies implicate the oncogenic transcription factor Forkhead Box M1 (FOXM1) as a potential therapeutic target in high-grade serous ovarian cancer (HGSOC). We evaluated the activity of different FOXM1 inhibitors in HGSOC cell models. RESULTS: We treated HGSOC and fallopian tube epithelial (FTE) cells with a panel of previously reported FOXM1 inhibitors. Based on drug potency, efficacy, and selectivity, determined through cell viability assays, we focused on two compounds, NB-73 and NB-115 (NB compounds), for further investigation. NB compounds potently and selectively inhibited FOXM1 with lesser effects on other FOX family members. NB compounds decreased FOXM1 expression via targeting the FOXM1 protein by promoting its proteasome-mediated degradation, and effectively suppressed FOXM1 gene targets at both the protein and mRNA level. At the cellular level, NB compounds promoted apoptotic cell death. Importantly, while inhibition of apoptosis using a pan-caspase inhibitor rescued HGSOC cells from NB compound-induced cell death, it did not rescue FOXM1 protein degradation, supporting that FOXM1 protein loss from NB compound treatment is specific and not a general consequence of cytotoxicity. Drug washout studies indicated that FOXM1 reduction was retained for at least 72 h post-treatment, suggesting that NB compounds exhibit long-lasting effects in HGSOC cells. NB compounds effectively suppressed both two-dimensional and three-dimensional HGSOC cell colony formation at sub-micromolar concentrations. Finally, NB compounds exhibited synergistic activity with carboplatin in HGSOC cells. CONCLUSIONS: NB compounds are potent, selective, and efficacious inhibitors of FOXM1 in HGSOC cells and are worthy of further investigation as HGSOC therapeutics.


Assuntos
Antineoplásicos , Apoptose , Proteína Forkhead Box M1 , Neoplasias Ovarianas , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/antagonistas & inibidores , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/patologia , Cistadenocarcinoma Seroso/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Gradação de Tumores
2.
bioRxiv ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38645081

RESUMO

The estrogen receptor-α (ER) is thought to function only as a homodimer, but responds to a variety of environmental, metazoan, and therapeutic estrogens at sub-saturating doses, supporting binding mixtures of ligands as well as dimers that are only partially occupied. Here, we present a series of flexible ER ligands that bind to receptor dimers with individual ligand poses favoring distinct receptor conformations -receptor conformational heterodimers-mimicking the binding of two different ligands. Molecular dynamics simulations showed that the pairs of different ligand poses changed the correlated motion across the dimer interface to generate asymmetric communication between the dimer interface, the ligands, and the surface binding sites for epigenetic regulatory proteins. By examining binding of the same ligand in crystal structures of ER in the agonist versus antagonist conformers, we also showed that these allosteric signals are bidirectional. The receptor conformer can drive different ligand binding modes to support agonist versus antagonist activity profiles, a revision of ligand binding theory that has focused on unidirectional signaling from ligand to the coregulator binding site. We also observed differences in the allosteric signals between ligand and coregulator binding sites in the monomeric versus dimeric receptor, and when bound by two different ligands, states that are physiologically relevant. Thus, ER conformational heterodimers integrate two different ligand-regulated activity profiles, representing new modes for ligand-dependent regulation of ER activity. Significance: The estrogen receptor-α (ER) regulates transcription in response to a hormonal milieu that includes low levels of estradiol, a variety of environmental estrogens, as well as ER antagonists such as breast cancer anti-hormonal therapies. While ER has been studied as a homodimer, the variety of ligand and receptor concentrations in different tissues means that the receptor can be occupied with two different ligands, with only one ligand in the dimer, or as a monomer. Here, we use X-ray crystallography and molecular dynamics simulations to reveal a new mode for ligand regulation of ER activity whereby sequence-identical homodimers can act as functional or conformational heterodimers having unique signaling characteristics, with ligand-selective allostery operating across the dimer interface integrating two different signaling outcomes.

3.
Theranostics ; 14(1): 249-264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164151

RESUMO

Rationale: 17ß-estradiol (E2) can directly promote the growth of ERα-negative cancer cells through activation of endothelial ERα in the tumor microenvironment, thereby increasing a normalized tumor angiogenesis. ERα acts as a transcription factor through its nuclear transcriptional AF-1 and AF-2 transactivation functions, but membrane ERα plays also an important role in endothelium. The present study aims to decipher the respective roles of these two pathways in ERα-negative tumor growth. Moreover, we delineate the actions of tamoxifen, a Selective Estrogen Receptor Modulator (SERM) in ERα-negative tumors growth and angiogenesis, since we recently demonstrated that tamoxifen impacts vasculature functions through complex modulation of ERα activity. Methods: ERα-negative B16K1 cancer cells were grafted into immunocompetent mice mutated for ERα-subfunctions and tumor growths were analyzed in these different models in response to E2 and/or tamoxifen treatment. Furthermore, RNA sequencings were analyzed in endothelial cells in response to these different treatments and validated by RT-qPCR and western blot. Results: We demonstrate that both nuclear and membrane ERα actions are required for the pro-tumoral effects of E2, while tamoxifen totally abrogates the E2-induced in vivo tumor growth, through inhibition of angiogenesis but promotion of vessel normalization. RNA sequencing indicates that tamoxifen inhibits the E2-induced genes, but also initiates a specific transcriptional program that especially regulates angiogenic genes and differentially regulates glycolysis, oxidative phosphorylation and inflammatory responses in endothelial cells. Conclusion: These findings provide evidence that tamoxifen specifically inhibits angiogenesis through a reprogramming of endothelial gene expression via regulation of some transcription factors, that could open new promising strategies to manage cancer therapies affecting the tumor microenvironment of ERα-negative tumors.


Assuntos
Neoplasias , Tamoxifeno , Camundongos , Animais , Tamoxifeno/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Células Endoteliais/metabolismo , Angiogênese , Expressão Gênica , Endotélio/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral/genética
4.
J Clin Invest ; 134(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37883178

RESUMO

Physiologic activation of estrogen receptor α (ERα) is mediated by estradiol (E2) binding in the ligand-binding pocket of the receptor, repositioning helix 12 (H12) to facilitate binding of coactivator proteins in the unoccupied coactivator binding groove. In breast cancer, activation of ERα is often observed through point mutations that lead to the same H12 repositioning in the absence of E2. Through expanded genetic sequencing of breast cancer patients, we identified a collection of mutations located far from H12 but nonetheless capable of promoting E2-independent transcription and breast cancer cell growth. Using machine learning and computational structure analyses, this set of mutants was inferred to act distinctly from the H12-repositioning mutants and instead was associated with conformational changes across the ERα dimer interface. Through both in vitro and in-cell assays of full-length ERα protein and isolated ligand-binding domain, we found that these mutants promoted ERα dimerization, stability, and nuclear localization. Point mutations that selectively disrupted dimerization abrogated E2-independent transcriptional activity of these dimer-promoting mutants. The results reveal a distinct mechanism for activation of ERα function through enforced receptor dimerization and suggest dimer disruption as a potential therapeutic strategy to treat ER-dependent cancers.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células , Dimerização , Estradiol/farmacologia , Estradiol/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Ligantes , Mutação
5.
Nat Commun ; 14(1): 4989, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591837

RESUMO

The estrogen receptor (ER) designated ERα has actions in many cell and tissue types that impact glucose homeostasis. It is unknown if these include mechanisms in endothelial cells, which have the potential to influence relative obesity, and processes in adipose tissue and skeletal muscle that impact glucose control. Here we show that independent of impact on events in adipose tissue, endothelial ERα promotes glucose tolerance by enhancing endothelial insulin transport to skeletal muscle. Endothelial ERα-deficient male mice are glucose intolerant and insulin resistant, and in females the antidiabetogenic actions of estradiol (E2) are absent. The glucose dysregulation is due to impaired skeletal muscle glucose disposal that results from attenuated muscle insulin delivery. Endothelial ERα activation stimulates insulin transcytosis by skeletal muscle microvascular endothelial cells. Mechanistically this involves nuclear ERα-dependent upregulation of vesicular trafficking regulator sorting nexin 5 (SNX5) expression, and PI3 kinase activation that drives plasma membrane recruitment of SNX5. Thus, coupled nuclear and non-nuclear actions of ERα promote endothelial insulin transport to skeletal muscle to foster normal glucose homeostasis.


Assuntos
Receptor alfa de Estrogênio , Insulina , Animais , Feminino , Masculino , Camundongos , Células Endoteliais , Glucose , Músculo Esquelético , Receptores de Estrogênio
6.
Breast Cancer Res ; 25(1): 76, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370117

RESUMO

FOXM1 (Forkhead box M1) is an oncogenic transcription factor that is greatly upregulated in breast cancer and many other cancers where it promotes tumorigenesis, and cancer growth and progression. It is expressed in all subtypes of breast cancer and is the factor most associated with risk of poor patient survival, especially so in triple negative breast cancer (TNBC). Thus, new approaches to inhibiting FOXM1 and its activities, and combination therapies utilizing FOXM1 inhibitors in conjunction with known cancer drugs that work together synergistically, could improve cancer treatment outcomes. Targeting FOXM1 might prove especially beneficial in TNBC where few targeted therapies currently exist, and also in suppressing recurrent advanced estrogen receptor (ER)-positive and HER2-positive breast cancers for which treatments with ER or HER2 targeted therapies that were effective initially are no longer beneficial. We present these perspectives and future directions in the context of what is known about FOXM1, its regulation, and its key roles in promoting cancer aggressiveness and metastasis, while being absent or very low in most normal non-regenerating adult tissues. We discuss new inhibitors of FOXM1 and highlight FOXM1 as an attractive target for controlling drug-resistant and difficult-to-suppress breast cancers, and how blocking FOXM1 might improve outcomes for patients with all subtypes of breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Adulto , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Proteína Forkhead Box M1/genética , Antineoplásicos/uso terapêutico , Resultado do Tratamento , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células
7.
Breast Cancer Res Treat ; 198(3): 607-621, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36847915

RESUMO

PURPOSE: Few targeted treatment options currently exist for patients with advanced, often recurrent breast cancers, both triple-negative breast cancer (TNBC) and hormone receptor-positive breast cancer. Forkhead box M1 (FOXM1) is an oncogenic transcription factor that drives all cancer hallmarks in all subtypes of breast cancer. We previously developed small-molecule inhibitors of FOXM1 and to further exploit their potential as anti-proliferative agents, we investigated combining FOXM1 inhibitors with drugs currently used in the treatment of breast and other cancers and assessed the potential for enhanced inhibition of breast cancer. METHODS: FOXM1 inhibitors alone and in combination with other cancer therapy drugs were assessed for their effects on suppression of cell viability and cell cycle progression, induction of apoptosis and caspase 3/7 activity, and changes in related gene expressions. Synergistic, additive, or antagonistic interactions were evaluated using ZIP (zero interaction potency) synergy scores and the Chou-Talalay interaction combination index. RESULTS: The FOXM1 inhibitors displayed synergistic inhibition of proliferation, enhanced G2/M cell cycle arrest, and increased apoptosis and caspase 3/7 activity and associated changes in gene expression when combined with several drugs across different pharmacological classes. We found especially strong enhanced effectiveness of FOXM1 inhibitors in combination with drugs in the proteasome inhibitor class for ER-positive and TNBC cells and with CDK4/6 inhibitors (Palbociclib, Abemaciclib, and Ribociclib) in ER-positive cells. CONCLUSION: The findings suggest that the combination of FOXM1 inhibitors with several other drugs might enable dose reduction in both agents and provide enhanced efficacy in treatment of breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Proteína Forkhead Box M1/genética , Caspase 3/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células
8.
J Clin Invest ; 133(7)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36795481

RESUMO

Activation of the tyrosine kinase c-Src promotes breast cancer progression and poor outcomes, yet the underlying mechanisms are incompletely understood. Here, we have shown that deletion of c-Src in a genetically engineered model mimicking the luminal B molecular subtype of breast cancer abrogated the activity of forkhead box M1 (FOXM1), a master transcriptional regulator of the cell cycle. We determined that c-Src phosphorylated FOXM1 on 2 tyrosine residues to stimulate its nuclear localization and target gene expression. These included key regulators of G2/M cell-cycle progression as well as c-Src itself, forming a positive feedback loop that drove proliferation in genetically engineered and patient-derived models of luminal B-like breast cancer. Using genetic approaches and small molecules that destabilize the FOXM1 protein, we found that targeting this mechanism induced G2/M cell-cycle arrest and apoptosis, blocked tumor progression, and impaired metastasis. We identified a positive correlation between FOXM1 and c-Src expression in human breast cancer and show that the expression of FOXM1 target genes predicts poor outcomes and associates with the luminal B subtype, which responds poorly to currently approved therapies. These findings revealed a regulatory network centered on c-Src and FOXM1 that is a targetable vulnerability in aggressive luminal breast cancers.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Linhagem Celular Tumoral , Fatores de Transcrição Forkhead/metabolismo , Proliferação de Células , Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica
9.
Endocrinology ; 163(12)2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36251879

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by the absence of estrogen receptor alpha, progesterone receptor, and HER2. These receptors often serve as targets in breast cancer treatment. As a result, TNBCs are difficult to treat and have a high propensity to metastasize to distant organs. For these reasons, TNBCs are responsible for over 50% of all breast cancer mortalities while only accounting for 15% to 20% of breast cancer cases. However, estrogen receptor beta 1 (ERß1), an isoform of the ESR2 gene, has emerged as a potential therapeutic target in the treatment of TNBCs. Using an in vivo xenograft preclinical mouse model with human TNBC, we found that expression of ERß1 significantly reduced both primary tumor growth and metastasis. Moreover, TNBCs with elevated levels of ERß1 showed reduction in epithelial to mesenchymal transition markers and breast cancer stem cell markers, and increases in the expression of genes associated with inhibition of cancer cell invasiveness and metastasis, suggesting possible mechanisms underlying the antitumor activity of ERß1. Gene expression analysis by quantitative polymerase chain reaction and RNA-seq revealed that treatment with chloroindazole, an ERß-selective agonist ligand, often enhanced the suppressive activity of ERß1 in TNBCs in vivo or in TNBC cells in culture, suggesting the potential utility of ERß1 and ERß ligand in improving TNBC treatment. The findings enable understanding of the mechanisms by which ERß1 impedes TNBC growth, invasiveness, and metastasis and consideration of ways by which treatments involving ERß might improve TNBC patient outcome.


Assuntos
Receptor beta de Estrogênio , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Animais , Camundongos , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Transição Epitelial-Mesenquimal/genética , Ligantes , Linhagem Celular Tumoral
10.
Sci Adv ; 8(35): eabn4007, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054350

RESUMO

Melanoma risk is 30 times higher in people with lightly pigmented skin versus darkly pigmented skin. Using primary human melanocytes representing the full human skin pigment continuum and preclinical melanoma models, we show that cell-intrinsic differences between dark and light melanocytes regulate melanocyte proliferative capacity and susceptibility to malignant transformation, independent of melanin and ultraviolet exposure. These differences result from dihydroxyphenylalanine (DOPA), a melanin precursor synthesized at higher levels in melanocytes from darkly pigmented skin. We used both high-throughput pharmacologic and genetic in vivo CRISPR screens to determine that DOPA limits melanocyte and melanoma cell proliferation by inhibiting the muscarinic acetylcholine receptor M1 (CHRM1) signaling. Pharmacologic CHRM1 antagonism in melanoma leads to depletion of c-Myc and FOXM1, both of which are proliferation drivers associated with aggressive melanoma. In preclinical mouse melanoma models, pharmacologic inhibition of CHRM1 or FOXM1 inhibited tumor growth. CHRM1 and FOXM1 may be new therapeutic targets for melanoma.

11.
Oncogene ; 41(32): 3899-3911, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35794249

RESUMO

The transcription factor, forkhead box M1 (FOXM1), has been implicated in the natural history and outcome of newly diagnosed high-risk myeloma (HRMM) and relapsed/refractory myeloma (RRMM), but the mechanism with which FOXM1 promotes the growth of neoplastic plasma cells is poorly understood. Here we show that FOXM1 is a positive regulator of myeloma metabolism that greatly impacts the bioenergetic pathways of glycolysis and oxidative phosphorylation (OxPhos). Using FOXM1-deficient myeloma cells as principal experimental model system, we find that FOXM1 increases glucose uptake, lactate output, and oxygen consumption in myeloma. We demonstrate that the novel 1,1-diarylethylene small-compound FOXM1 inhibitor, NB73, suppresses myeloma in cell culture and human-in-mouse xenografts using a mechanism that includes enhanced proteasomal FOXM1 degradation. Consistent with the FOXM1-stabilizing chaperone function of heat shock protein 90 (HSP90), the HSP90 inhibitor, geldanamycin, collaborates with NB73 in slowing down myeloma. These findings define FOXM1 as a key driver of myeloma metabolism and underscore the feasibility of targeting FOXM1 for new approaches to myeloma therapy and prevention.


Assuntos
Mieloma Múltiplo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glicólise , Humanos , Camundongos , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Fatores de Transcrição/metabolismo
12.
Mol Cancer Res ; 20(6): 923-937, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35259269

RESUMO

Estrogen receptor-positive (ER+) metastatic tumors contribute to nearly 70% of breast cancer-related deaths. Most patients with ER+ metastatic breast cancer (MBC) undergo treatment with the estrogen receptor antagonist fulvestrant as standard of care. Yet, among such patients, metastasis in liver is associated with reduced overall survival compared with other metastasis sites. The factors underlying the reduced responsiveness of liver metastases to ER-targeting agents remain unknown, impeding the development of more effective treatment approaches to improve outcomes for patients with ER+ liver metastases. We therefore evaluated site-specific changes in MBC cells and determined the mechanisms through which the liver metastatic niche specifically influences ER+ tumor metabolism and drug resistance. We characterized ER activity of MBC cells both in vitro, using a novel system of tissue-specific extracellular matrix hydrogels representing the stroma of ER+ tumor metastatic sites (liver, lung, and bone), and in vivo, in liver and lung metastasis mouse models. ER+ metastatic liver tumors and MBC cells grown in liver hydrogels displayed upregulated expression of glucose metabolism enzymes in response to fulvestrant. Furthermore, differential ERα activity, but not expression, was detected in liver hydrogels. In vivo, increased glucose metabolism led to increased glycogen deposition in liver metastatic tumors, while a fasting-mimicking diet increased efficacy of fulvestrant treatment to reduce the metastatic burden. Our findings identify a novel mechanism of endocrine resistance driven by the liver tumor microenvironment. IMPLICATIONS: These results may guide the development of dietary strategies to circumvent drug resistance in liver metastasis, with potential applicability in other metastatic diseases.


Assuntos
Neoplasias da Mama , Neoplasias Hepáticas , Animais , Neoplasias da Mama/patologia , Dieta , Feminino , Fulvestranto/efeitos adversos , Glucose , Humanos , Hidrogéis/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Receptores de Estrogênio/metabolismo , Microambiente Tumoral
13.
Cancers (Basel) ; 13(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34944900

RESUMO

Forkhead box M1 (FOXM1), an oncogenic transcription factor associated with aggressiveness and highly expressed in many cancers, is an emerging therapeutic target. Using novel 1,1-diarylethylene-diammonium small molecule FOXM1 inhibitors, we undertook transcriptomic, protein, and functional analyses to identify mechanisms by which these compounds impact breast cancer growth and survival, and the changes that occur in estrogen receptor (ERα)-positive and triple negative breast cancer cells that acquire resistance upon long-term treatment with the inhibitors. In sensitive cells, these compounds regulated FOXM1 gene networks controlling cell cycle progression, DNA damage repair, and apoptosis. Resistant cells showed transcriptional alterations that reversed the expression of many genes in the FOXM1 network and rewiring that enhanced inflammatory signaling and upregulated HER2 or EGFR growth factor pathways. ERα-positive breast cancer cells that developed resistance showed greatly reduced ERα levels and responsiveness to fulvestrant and a 10-fold increased sensitivity to lapatinib, suggesting that targeting rewired processes in the resistant state may provide benefits and prolong anticancer effectiveness. Improved understanding of how FOXM1 inhibitors suppress breast cancer and how cancer cells can defeat their effectiveness and acquire resistance should be helpful in directing further studies to move these agents towards translation into the clinic.

14.
Nutrients ; 13(10)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34684335

RESUMO

About 20-30% of premenopausal women have metabolic syndrome, and the number is almost double in postmenopausal women, and these women have an increased risk of hepatosteatosis. Postmenopausal women with metabolic syndrome are often treated with hormone replacement therapy (HRT), but estrogens in currently available HRTs increase the risk of breast and endometrial cancers and Cardiovascular Disease. Therefore, there is a critical need to find safer alternatives to HRT to improve postmenopausal metabolic health. Pathway preferential estrogen 1 (PaPE-1) is a novel estrogen receptor ligand that has been shown to favorably affect metabolic tissues without adverse effects on reproductive tissues. In this study, we have examined the effects of PaPE-1 on metabolic health, in particular, examining its effects on the liver transcriptome and on plasma metabolites in two different mouse models: diet-induced obesity (DIO) and leptin-deficient (ob/ob) mice. PaPE-1 significantly decreased liver weight and lipid accumulation in both DIO and ob/ob models and lowered the expression of genes associated with fatty acid metabolism and collagen deposition. In addition, PaPE-1 significantly increased the expression of mitochondrial genes, particularly ones associated with the electron transport chain, suggesting an increase in energy expenditure. Integrated pathway analysis using transcriptomics and metabolomics data showed that PaPE-1 treatment lowered inflammation, collagen deposition, and pathways regulating fatty acid metabolism and increased metabolites associated with glutathione metabolism. Overall, our findings support a beneficial metabolic role for PaPE-1 and suggest that PaPE-1 may protect postmenopausal women from fatty liver disease without increasing reproductive cancer risk.


Assuntos
Dieta Hiperlipídica , Estrogênios/uso terapêutico , Fígado Gorduroso/etiologia , Fígado Gorduroso/prevenção & controle , Ovariectomia , Animais , Peso Corporal/efeitos dos fármacos , Colágeno/metabolismo , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Fígado Gorduroso/complicações , Fígado Gorduroso/genética , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Inflamação/patologia , Ligantes , Metabolismo dos Lipídeos , Fígado/metabolismo , Metabolômica , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/complicações , Obesidade/genética , Tamanho do Órgão/efeitos dos fármacos , Transcriptoma/genética , Aumento de Peso
15.
Cell ; 184(20): 5086-5088, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34559987

RESUMO

The nuclear hormone receptor estrogen receptor alpha (ERα) is a well-known transcription factor present in many breast cancers, where it promotes cancer progression. In this issue of Cell, Xu et al. report that ERα is also an RNA-binding protein and that its post-transcriptional activity enables cancer cell fitness and survival.


Assuntos
Neoplasias da Mama , Receptores de Estrogênio , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células , Receptor alfa de Estrogênio/genética , Feminino , Humanos , RNA/genética , Receptores de Estrogênio/genética
16.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34452998

RESUMO

Efforts to improve estrogen receptor-α (ER)-targeted therapies in breast cancer have relied upon a single mechanism, with ligands having a single side chain on the ligand core that extends outward to determine antagonism of breast cancer growth. Here, we describe inhibitors with two ER-targeting moieties, one of which uses an alternate structural mechanism to generate full antagonism, freeing the side chain to independently determine other critical properties of the ligands. By combining two molecular targeting approaches into a single ER ligand, we have generated antiestrogens that function through new mechanisms and structural paradigms to achieve antagonism. These dual-mechanism ER inhibitors (DMERIs) cause alternate, noncanonical structural perturbations of the receptor ligand-binding domain (LBD) to antagonize proliferation in ER-positive breast cancer cells and in allele-specific resistance models. Our structural analyses with DMERIs highlight marked differences from current standard-of-care, single-mechanism antiestrogens. These findings uncover an enhanced flexibility of the ER LBD through which it can access nonconsensus conformational modes in response to DMERI binding, broadly and effectively suppressing ER activity.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Antagonistas de Estrogênios/química , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cristalografia por Raios X , Feminino , Humanos , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Células Tumorais Cultivadas
17.
Mol Cancer Res ; 19(9): 1559-1570, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34021071

RESUMO

Although most primary estrogen receptor (ER)-positive breast cancers respond well to endocrine therapies, many relapse later as metastatic disease due to endocrine therapy resistance. Over one third of these are associated with mutations in the ligand-binding domain (LBD) that activate the receptor independent of ligand. We have used an array of advanced computational techniques rooted in molecular dynamics simulations, in concert with and validated by experiments, to characterize the molecular mechanisms by which specific acquired somatic point mutations give rise to ER constitutive activation. By comparing structural and energetic features of constitutively active mutants and ligand-bound forms of ER-LBD with unliganded wild-type (WT) ER, we characterize a spring force originating from strain in the Helix 11-12 loop of WT-ER, opposing folding of Helix 12 into the active conformation and keeping WT-ER off and disordered, with the ligand-binding pocket open for rapid ligand binding. We quantify ways in which this spring force is abrogated by activating mutations that latch (Y537S) or relax (D538G) the folded form of the loop, enabling formation of the active conformation without ligand binding. We also identify a new ligand-mediated hydrogen-bonding network that stabilizes the active, ligand-bound conformation of WT-ER LBD, and similarly stabilizes the active conformation of the ER mutants in the hormone-free state. IMPLICATIONS: Our investigations provide deep insight into the energetic basis for the structural mechanisms of receptor activation through mutation, exemplified here with ER in endocrine-resistant metastatic breast cancers, with potential application to other dysregulated receptor signaling due to driver mutations.


Assuntos
Neoplasias da Mama/patologia , Mutação , Conformação Proteica , Receptores de Estrogênio/química , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Cristalografia por Raios X , Feminino , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Células Tumorais Cultivadas
18.
Breast Cancer Res Treat ; 185(2): 281-292, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33001337

RESUMO

PURPOSE: Triple negative breast cancer (TNBC), an aggressive subtype of breast cancer, lacks the three major receptors for predicting outcome or targeting therapy. Hence, our aim was to evaluate the potential of estrogen receptor beta (ERß) as a possible endocrine therapy target in TNBC. METHODS: The expression and prognostic effect of ERß isoforms were analyzed using TCGA breast tumor data, and the expression of ERß isoform mRNA and protein in TNBC cell lines was assayed. Endogenous ERß2 and ERß5 were knocked down with siRNA, and ERß2, ERß5, and ERß1 were upregulated using a doxycycline-inducible lentiviral system. Cell proliferation, migration and invasion, and specific gene expressions were evaluated. RESULTS: ERß2 and ERß5 were the predominant endogenous forms of ERß in TNBC tumors and cell lines. High ERß2 predicted worse clinical outcome. Knockdown of endogenous ERß2/ERß5 in cell lines suppressed proliferation, migration and invasion, and downregulated proto-oncogene survivin expression. ERß2/ERß5 upregulation did the reverse, increasing survivin and these cell activities. ERß1 was barely detectable in TNBC cell lines, but its upregulation reduced survivin, increased tumor suppressor expression (E-cadherin and cystatins), and suppressed proliferation, migration and invasion in both ligand-independent and dependent manners, suggesting the possible translational benefit of ERß ligands. CONCLUSIONS: ERß2/ERß5 and ERß1 exhibit sharply contrasting activities in TNBC cells. Our findings imply that delineating the absolute amounts and relative ratios of the different ERß isoforms might have prognostic and therapeutic relevance, and could enable better selection of optimal approaches for treatment of this often aggressive form of breast cancer.


Assuntos
Neoplasias da Mama , Receptor beta de Estrogênio , Isoformas de Proteínas , Neoplasias de Mama Triplo Negativas , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Humanos , Prognóstico , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proto-Oncogene Mas , RNA Mensageiro , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética
19.
Cancers (Basel) ; 12(9)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961773

RESUMO

Metastasis-related complications account for the overwhelming majority of breast cancer mortalities. Triple negative breast cancer (TNBC), the most aggressive breast cancer subtype, has a high propensity to metastasize to distant organs, leading to poor patient survival. The forkhead transcription factor, FOXM1, is especially upregulated and overexpressed in TNBC and is known to regulate multiple signaling pathways that control many key cancer properties, including proliferation, invasiveness, stem cell renewal, and therapy resistance, making FOXM1 a critical therapeutic target for TNBC. In this study, we test the effectiveness of a novel class of 1,1-diarylethylene FOXM1 inhibitory compounds in suppressing TNBC cell migration, invasion, and metastasis using in vitro cell culture and in vivo tumor models. We show that these compounds inhibit the motility and invasiveness of TNBC MDA-MB-231 and DT28 cells, along with reducing the expression of important epithelial to mesenchymal transition (EMT) associated genes. Further, orthotopic tumor studies in NOD-SCID-gamma (NSG) mice demonstrate that these compounds reduce FOXM1 expression and suppress TNBC tumor growth as well as distant metastasis. Gene expression and protein analyses confirm the decreased levels of EMT factors and FOXM1-regulated target genes in tumors and metastatic lesions in the inhibitor-treated animals. The findings suggest that these FOXM1 suppressive compounds may have therapeutic potential in treating triple negative breast cancer, with the aim of reducing tumor progression and metastatic outgrowth.

20.
Cancers (Basel) ; 12(9)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847042

RESUMO

The majority of breast cancer specific deaths in women with estrogen receptor positive (ER+) tumors occur due to metastases that are resistant to therapy. There is a critical need for novel therapeutic approaches to achieve tumor regression and/or maintain therapy responsiveness in metastatic ER+ tumors. The objective of this study was to elucidate the role of metabolic pathways that undermine therapy efficacy in ER+ breast cancers. Our previous studies identified Exportin 1 (XPO1), a nuclear export protein, as an important player in endocrine resistance progression and showed that combining selinexor (SEL), an FDA-approved XPO1 antagonist, synergized with endocrine agents and provided sustained tumor regression. In the current study, using a combination of transcriptomics, metabolomics and metabolic flux experiments, we identified certain mitochondrial pathways to be upregulated during endocrine resistance. When endocrine resistant cells were treated with single agents in media conditions that mimic a nutrient deprived tumor microenvironment, their glutamine dependence for continuation of mitochondrial respiration increased. The effect of glutamine was dependent on conversion of the glutamine to glutamate, and generation of NAD+. PGC1α, a key regulator of metabolism, was the main driver of the rewired metabolic phenotype. Remodeling metabolic pathways to regenerate new vulnerabilities in endocrine resistant breast tumors is novel, and our findings reveal a critical role that ERα-XPO1 crosstalk plays in reducing cancer recurrences. Combining SEL with current therapies used in clinical management of ER+ metastatic breast cancer shows promise for treating and keeping these cancers responsive to therapies in already metastasized patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...