Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Biotechnol ; 13(1): 19-31, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-29943398

RESUMO

Marine habitats represent a prolific source for molecules of biotechnological interest. In particular, marine bacteria have attracted attention and were successfully exploited for industrial applications. Recently, a group of Pseudomonas species isolated from extreme habitats or living in association with algae or sponges were clustered in the newly established Pseudomonas pertucinogena lineage. Remarkably for the predominantly terrestrial genus Pseudomonas, more than half (9) of currently 16 species within this lineage were isolated from marine or saline habitats. Unlike other Pseudomonas species, they seem to have in common a highly specialized metabolism. Furthermore, the marine members apparently possess the capacity to produce biomolecules of biotechnological interest (e.g. dehalogenases, polyester hydrolases, transaminases). Here, we summarize the knowledge regarding the enzymatic endowment of the marine Pseudomonas pertucinogena bacteria and report on a genomic analysis focusing on the presence of genes encoding esterases, dehalogenases, transaminases and secondary metabolites including carbon storage compounds.


Assuntos
Bactérias , Biotecnologia , Ecossistema , Pseudomonas/genética
2.
Mar Drugs ; 17(7)2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31323998

RESUMO

Biosurfactants are amphiphilic secondary metabolites produced by microorganisms. Marine bacteria have recently emerged as a rich source for these natural products which exhibit surface-active properties, making them useful for diverse applications such as detergents, wetting and foaming agents, solubilisers, emulsifiers and dispersants. Although precise structural data are often lacking, the already available information deduced from biochemical analyses and genome sequences of marine microbes indicates a high structural diversity including a broad spectrum of fatty acid derivatives, lipoamino acids, lipopeptides and glycolipids. This review aims to summarise biosyntheses and structures with an emphasis on low molecular weight biosurfactants produced by marine microorganisms and describes various biotechnological applications with special emphasis on their role in the bioremediation of oil-contaminated environments. Furthermore, novel exploitation strategies are suggested in an attempt to extend the existing biosurfactant portfolio.


Assuntos
Organismos Aquáticos/química , Bactérias/química , Produtos Biológicos/química , Biotecnologia/métodos , Tensoativos/química , Biodegradação Ambiental/efeitos dos fármacos , Estrutura Molecular , Poluição por Petróleo
3.
Appl Environ Microbiol ; 85(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30413473

RESUMO

Amination of bulky ketones, particularly in (R) configuration, is an attractive chemical conversion; however, known ω-transaminases (ω-TAs) show insufficient levels of performance. By applying two screening methods, we discovered 10 amine transaminases from the class III ω-TA family that were 38% to 76% identical to homologues. We present examples of such enzymes preferring bulky ketones over keto acids and aldehydes with stringent (S) selectivity. We also report representatives from the class III ω-TAs capable of converting (R) and (S) amines and bulky ketones and one that can convert amines with longer alkyl substituents. The preference for bulky ketones was associated with the presence of a hairpin region proximal to the conserved Arg414 and residues conforming and close to it. The outward orientation of Arg414 additionally favored the conversion of (R) amines. This configuration was also found to favor the utilization of putrescine as an amine donor, so that class III ω-TAs with Arg414 in outward orientation may participate in vivo in the catabolism of putrescine. The positioning of the conserved Ser231 also contributes to the preference for amines with longer alkyl substituents. Optimal temperatures for activity ranged from 45 to 65°C, and a few enzymes retained ≥50% of their activity in water-soluble solvents (up to 50% [vol/vol]). Hence, our results will pave the way to design, in the future, new class III ω-TAs converting bulky ketones and (R) amines for the production of high-value products and to screen for those converting putrescine.IMPORTANCE Amine transaminases of the class III ω-TAs are key enzymes for modification of chemical building blocks, but finding those capable of converting bulky ketones and (R) amines is still challenging. Here, by an extensive analysis of the substrate spectra of 10 class III ω-TAs, we identified a number of residues playing a role in determining the access and positioning of bulky ketones, bulky amines, and (R)- and (S) amines, as well as of environmentally relevant polyamines, particularly putrescine. The results presented can significantly expand future opportunities for designing (R)-specific class III ω-TAs to convert valuable bulky ketones and amines, as well as for deepening the knowledge into the polyamine catabolic pathways.


Assuntos
Proteínas de Bactérias/genética , Bioprospecção , Genes Bacterianos , Cetonas/metabolismo , Poliaminas/metabolismo , Pseudomonas oleovorans/genética , Transaminases/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Pseudomonas oleovorans/enzimologia , Pseudomonas oleovorans/metabolismo , Alinhamento de Sequência , Transaminases/metabolismo
4.
Genome Announc ; 5(32)2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798180

RESUMO

The Gram-negative proteobacterium Pseudomonas oleovorans DSM 1045 is considered a promising source for enzymes of biotechnological interest, e.g., hydrolases and transaminases. Here, we present a draft sequence of its 4.86-Mb genome, enabling the identification of novel biocatalysts.

5.
Methods Mol Biol ; 1539: 159-196, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27900689

RESUMO

Functional expression of genes from metagenomic libraries is limited by various factors including inefficient transcription and/or translation of target genes as well as improper folding and assembly of the corresponding proteins caused by the lack of appropriate chaperones and cofactors. It is now well accepted that the use of different expression hosts of distinct phylogeny and physiology can dramatically increase the rate of success. In the following chapter, we therefore describe tools and protocols allowing for the comparative heterologous expression of genes in five bacterial expression hosts, namely Escherichia coli, Pseudomonas putida, Bacillus subtilis, Burkholderia glumae, and Rhodobacter capsulatus. Different broad-host-range shuttle vectors are described that allow activity-based screening of metagenomic DNA in these bacteria. Furthermore, we describe the newly developed transfer-and-expression system TREX which comprises genetic elements essential to allow for expression of large clusters of functionally coupled genes in different microbial species.


Assuntos
Microbiologia Ambiental , Expressão Gênica , Metagenoma , Metagenômica , Clonagem Molecular , Biblioteca Gênica , Ordem dos Genes , Vetores Genéticos/genética , Metagenômica/métodos , Família Multigênica , Transformação Bacteriana
6.
Environ Microbiol ; 17(2): 332-45, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25330254

RESUMO

The present study provides a deeper view of protein functionality as a function of temperature, salt and pressure in deep-sea habitats. A set of eight different enzymes from five distinct deep-sea (3040-4908 m depth), moderately warm (14.0-16.5°C) biotopes, characterized by a wide range of salinities (39-348 practical salinity units), were investigated for this purpose. An enzyme from a 'superficial' marine hydrothermal habitat (65°C) was isolated and characterized for comparative purposes. We report here the first experimental evidence suggesting that in salt-saturated deep-sea habitats, the adaptation to high pressure is linked to high thermal resistance (P value = 0.0036). Salinity might therefore increase the temperature window for enzyme activity, and possibly microbial growth, in deep-sea habitats. As an example, Lake Medee, the largest hypersaline deep-sea anoxic lake of the Eastern Mediterranean Sea, where the water temperature is never higher than 16°C, was shown to contain halopiezophilic-like enzymes that are most active at 70°C and with denaturing temperatures of 71.4°C. The determination of the crystal structures of five proteins revealed unknown molecular mechanisms involved in protein adaptation to poly-extremes as well as distinct active site architectures and substrate preferences relative to other structurally characterized enzymes.


Assuntos
Aclimatação , Organismos Aquáticos/enzimologia , Bactérias/enzimologia , Pressão Hidrostática , Água do Mar/microbiologia , Adaptação Fisiológica , Ecossistema , Lagos , Mar Mediterrâneo , Salinidade , Sais
7.
Methods Mol Biol ; 824: 251-69, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22160903

RESUMO

The functional expression of heterologous genes in standard hosts such as Escherichia coli is often hampered by various limitations including improper folding, incomplete targeting, and missassembly of the corresponding enzymes. This observation led to the development of numerous expression systems that are based on alternative, metabolic versatile hosts. One such organism is the Gram-negative phototrophic nonsulfur purple bacterium Rhodobacter capsulatus. During photosynthetic growth, R. capsulatus exhibits several unique properties including the formation of an intracytoplasmic membrane system as well as the synthesis of various metal-containing cofactors. These properties make R. capsulatus a promising expression host particularly suited for difficult-to-express proteins such as membrane proteins. In this chapter, we describe a novel R. capsulatus expression system and its application.


Assuntos
Técnicas de Cultura de Células/métodos , Membrana Celular/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Rhodobacter capsulatus/metabolismo , Western Blotting , Fracionamento Celular , Clonagem Molecular , Eletroforese em Gel de Ágar , Eletroforese em Gel de Poliacrilamida , Escherichia coli , Regulação Bacteriana da Expressão Gênica/genética , Vetores Genéticos/genética , Plasmídeos/genética , Reação em Cadeia da Polimerase , Rhodobacter capsulatus/citologia , Rhodobacter capsulatus/genética , Transformação Bacteriana
8.
Protein Expr Purif ; 69(2): 137-46, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19706327

RESUMO

The functional expression of heterologous genes using standard bacterial expression hosts such as Escherichia coli is often limited, e.g. by incorrect folding, assembly or targeting of recombinant proteins. Consequently, alternative bacterial expression systems have to be developed to provide novel strategies for protein synthesis exceeding the repertoire of the standard expression host E. coli. Here, we report on the construction of a novel expression system that combines the high processivity of T7 RNA polymerase with the unique physiological properties of the facultative photosynthetic bacterium Rhodobacter capsulatus. This system basically consists of a recombinant R. capsulatus T7 expression strain (R. capsulatus B10S-T7) harboring the respective polymerase gene under control of a fructose inducible promoter. In addition, a set of different broad-host-range vectors (pRho) was constructed allowing T7 RNA polymerase dependent and independent target gene expression in R. capsulatus and other Gram-negative bacteria. The expression efficiency of the novel system was studied in R. capsulatus and E. coli using the yellow fluorescent protein (YFP) as model protein. Expression levels were comparable in both expression hosts and yielded up to 80mg/l YFP in phototrophically grown R. capsulatus cultures. This result clearly indicates that the novel R. capsulatus-based expression system is well suited for the high-level expression of soluble proteins.


Assuntos
Proteínas de Bactérias , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Rhodobacter capsulatus/metabolismo , Proteínas Virais/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , RNA Polimerases Dirigidas por DNA/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...