Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 501: 247-262, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33186656

RESUMO

Autophagy is a critical survival factor for cancer cells, whereby it maintains cellular homeostasis by degrading damaged organelles and unwanted proteins and supports cellular biosynthesis in response to stress. Cancer cells, including hepatocellular carcinoma (HCC), are often situated in a hypoxic, nutrient-deprived and stressful microenvironment where tumor cells are yet still able to adapt and survive. However, the mechanism underlying this adaptation and survival is not well-defined. We report deficiency of the post-translational modification enzyme protein arginine N-methyltransferase 6 (PRMT6) in HCC to promote the induction of autophagy under oxygen/nutrient-derived and sorafenib drug-induced stress conditions. Enhanced autophagic flux in HCC cells negatively correlated with PRMT6 expression, with the catalytic domain of PRMT6 critically important in mediating these autophagic activities. Mechanistically, PRMT6 physically interacts and methylates BAG5 to enhance the degradation of its interacting partner HSC70, a well-known autophagy player. The therapeutic potential of targeting BAG5 using genetic approach to reverse tumorigenicity and sorafenib resistance mediated by PRMT6 deficiency in HCC is also demonstrated in an in vivo model. The clinical implications of these findings are highlighted by the inverse correlative expressions of PRMT6 and HSC70 in HCC tissues. Collectively, deficiency of PRMT6 induces autophagy to promote tumorigenicity and cell survival in hostile microenvironments of HCC tumors by regulating BAG5-associated HSC70 stability through post-translational methylation of BAG5. Targeting BAG5 may therefore be an attractive strategy in HCC treatment by suppressing autophagy and inducing HCC cell sensitivity to sorafenib for treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Hepatocelular/patologia , Resistencia a Medicamentos Antineoplásicos , Proteínas de Choque Térmico HSC70/química , Neoplasias Hepáticas/patologia , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Autofagia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Metilação , Camundongos , Transplante de Neoplasias , Estabilidade Proteica , Genética Reversa , Sorafenibe/farmacologia
2.
J Hepatol ; 69(4): 826-839, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29885413

RESUMO

BACKGROUND & AIMS: Advanced hepatocellular carcinoma (HCC) is a lethal malignancy with limited treatment options. Sorafenib is the only FDA-approved first-line targeted drug for advanced HCC, but its effect on patient survival is limited. Further, patients ultimately present with disease progression. A better understanding of the causes of sorafenib resistance, enhancing the efficacy of sorafenib and finding a reliable predictive biomarker are crucial to achieve efficient control of HCC. METHODS: The functional effects of ANXA3 in conferring sorafenib resistance to HCC cells were analyzed in apoptotic and tumorigenicity assays. The role of ANXA3/PKCδ-mediated p38 signaling, and subsequently altered autophagic and apoptotic events, was assessed by immunoprecipitation, immunoblotting, immunofluorescence and transmission electron microscopy assays. The prognostic value of ANXA3 in predicting response to sorafenib was evaluated by immunohistochemistry. The therapeutic value of targeting ANXA3 to combat HCC with anti-ANXA3 monoclonal antibody alone or in combination with sorafenib/regorafenib was investigated ex vivo and in vivo. RESULTS: ANXA3 conferred HCC cells with resistance to sorafenib. ANXA3 was found enriched in sorafenib-resistant HCC cells and patient-derived xenografts. Mechanistically, overexpression of ANXA3 in sorafenib-resistant HCC cells suppressed PKCδ/p38 associated apoptosis and activated autophagy for cell survival. Clinically, ANXA3 expression correlated positively with the autophagic marker LC3B in HCC and was associated with a worse overall survival in patients who went on to receive sorafenib treatment. Anti-ANXA3 monoclonal antibody therapy combined with sorafenib/regorafenib impaired tumor growth in vivo and significantly increased survival. CONCLUSION: Anti-ANXA3 therapy in combination with sorafenib/regorafenib represents a novel therapeutic strategy for HCC treatment. ANXA3 represents a useful predictive biomarker to stratify patients with HCC for sorafenib treatment. LAY SUMMARY: This study represents the most extensive pre-clinical characterization of anti-ANXA3 monoclonal antibodies for the treatment of hepatocellular carcinoma to date. These results support the clinical trial development of anti-ANXA3 antibodies in combination with sorafenib/regorafenib. Further studies will optimize patient target selection and identify the best treatment combinations.


Assuntos
Anexina A3/antagonistas & inibidores , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Compostos de Fenilureia/uso terapêutico , Piridinas/uso terapêutico , Sorafenibe/uso terapêutico , Animais , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Resistencia a Medicamentos Antineoplásicos , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
3.
Cell Transplant ; 24(3): 403-17, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25622224

RESUMO

Our previous results showed that the polysaccharides extracted from Lycium barbarum (LBP) could delay secondary degeneration of retinal ganglion cell bodies and improve the function of the retinas after partial optic nerve transection (PONT). Although the common degeneration mechanisms were believed to be shared by both neuronal bodies and axons, recently published data from slow Wallerian degeneration mutant (Wld(s)) mice supported the divergence in the mechanisms of them. Therefore, we want to determine if LBP could also delay the degeneration of axons after PONT. Microglia/macrophages were thought to be a source of reactive oxygen species after central nervous system (CNS) injury. After PONT, however, oxidative stress was believed to occur prior to the activation of microglia/macrophages in the areas vulnerable to secondary degeneration both in the optic nerves (ONs) and the retinas. But the results did not take into account the morphological changes of microglia/macrophages after their activation. So we examined the morphology in addition to the response magnitude of microglia/macrophages to determine their time point of activation. In addition, the effects of LBP on the activation of microglia/macrophages were investigated. The results showed that (1) LBP reduced the loss of axons in the central ONs and preserved the g-ratio (axon diameter/fiber diameter) in the ventral ONs although no significant effect was detected in the dorsal ONs; (2) microglia/macrophages were activated in the ONs by 12 h after PONT; (3) LBP decreased the response magnitude of microglia/macrophages 4 weeks after PONT. In conclusion, our results showed that LBP could delay secondary degeneration of the axons, and LBP could also inhibit the activation of microglia/macrophages. Therefore, LBP could be a promising herbal medicine to delay secondary degeneration in the CNS via modulating the function of microglia/macrophages.


Assuntos
Axônios/fisiologia , Medicamentos de Ervas Chinesas/farmacologia , Lycium/metabolismo , Degeneração Neural/etiologia , Traumatismos do Nervo Óptico/complicações , Animais , Axônios/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Medicamentos de Ervas Chinesas/uso terapêutico , Feminino , Frutas/química , Frutas/metabolismo , Medicina Herbária , Lycium/química , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/fisiologia , Camundongos , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/fisiologia , Bainha de Mielina/fisiologia , Degeneração Neural/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Nervo Óptico/patologia , Traumatismos do Nervo Óptico/patologia , Traumatismos do Nervo Óptico/terapia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Retina/patologia , Degeneração Walleriana/complicações , Degeneração Walleriana/patologia
4.
Neuroimage ; 54(1): 389-95, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20633657

RESUMO

The superior colliculus (SC) is a dome-shaped subcortical laminar structure in the mammalian midbrain, whose superficial layers receive visual information from the retina in a topological order. Despite the increasing number of studies investigating retinotopic projection in visual brain development and disorders, in vivo, high-resolution 3D mapping of topographic organization in the subcortical visual nuclei has not yet been available. This study explores the capability of 3D manganese-enhanced MRI (MEMRI) at 200 µm isotropic resolution for in vivo retinotopic mapping of the rat SC upon partial transection of the intraorbital optic nerve. One day after intravitreal Mn(2+) injection into both eyes, animals with partial transection at the right superior intraorbital optic nerve in Group 1 (n=8) exhibited a significantly lower T1-weighted signal intensity in the lateral region of the left SC compared to the left medial SC and right control SC. Partial transection toward the temporal or nasal region of the right intraorbital optic nerve in Group 2 (n=7) led to T1-weighted hypointensity in the rostral or caudal region of the left SC, whereas a clear border was observed separating 2 halves of the left SC in all groups. Previous histological and electrophysiological studies showed that the retinal ganglion cell axons emanating from superior, inferior, nasal and temporal retina projected respectively to the contralateral lateral, medial, caudal and rostral SC in rodents. While this topological pattern is preserved in the intraorbital optic nerve, it was shown that partial transection of the superior intraorbital optic nerve led to primary injury predominantly in the superior but not inferior retina and optic nerve. The results of this study demonstrated the sensitivity of submillimeter-resolution MEMRI for in vivo, 3D mapping of the precise retinotopic projections in SC upon reduced anterograde axonal transport of Mn(2+) ions from localized regions of the anterior visual pathways to the subcortical midbrain nuclei. Future MEMRI studies are envisioned that measure the topographic changes in brain development, diseases, plasticity and regeneration therapies in a global and longitudinal setting.


Assuntos
Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Manganês/farmacologia , Nervo Óptico/fisiologia , Retina/fisiologia , Colículos Superiores/fisiologia , Vias Visuais/fisiologia , Animais , Axônios/fisiologia , Feminino , Processamento de Imagem Assistida por Computador/métodos , Artéria Oftálmica/fisiologia , Nervo Óptico/anatomia & histologia , Ratos , Ratos Sprague-Dawley , Retina/efeitos dos fármacos , Vias Visuais/anatomia & histologia , Vias Visuais/efeitos dos fármacos
5.
Nanomedicine ; 2(4): 207-15, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17292144

RESUMO

Hemostasis is a major problem in surgical procedures and after major trauma. There are few effective methods to stop bleeding without causing secondary damage. We used a self-assembling peptide that establishes a nanofiber barrier to achieve complete hemostasis immediately when applied directly to a wound in the brain, spinal cord, femoral artery, liver, or skin of mammals. This novel therapy stops bleeding without the use of pressure, cauterization, vasoconstriction, coagulation, or cross-linked adhesives. The self-assembling solution is nontoxic and nonimmunogenic, and the breakdown products are amino acids, which are tissue building blocks that can be used to repair the site of injury. Here we report the first use of nanotechnology to achieve complete hemostasis in less than 15 seconds, which could fundamentally change how much blood is needed during surgery of the future.


Assuntos
Perda Sanguínea Cirúrgica , Hemostasia Cirúrgica , Técnicas Hemostáticas , Hemostáticos/administração & dosagem , Hemostáticos/química , Nanomedicina/instrumentação , Nanomedicina/métodos , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Animais , Biópsia , Coagulação Sanguínea/efeitos dos fármacos , Cricetinae , Humanos , Mesocricetus , Camundongos , Ratos , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...