Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Res Sq ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38313297

RESUMO

Background: Little is known about the pathogenesis of Bipolar Disorder, and even less is known about the genetic differences between its subtypes. Bipolar Disorder is classified into different subtypes, which present different symptoms and lifetime courses. While genetic studies have been conducted in Bipolar Disorder, most examined the gene expression of only Bipolar Disorder Type 1. Studies that include Bipolar Disorder Type 1 and Bipolar Disorder Type 2 often fail to differentiate them into separate conditions. Few large transcriptomic meta-analyses in Bipolar Disorder have been conducted to identify genetic pathways. Thus, using publicly available data sets we aim here to uncover significant differential gene expression that allows distinguishing Type 1 and Type 2 Bipolar Disorders, as well as find patterns in Bipolar Disorder as a whole. Methods: We analyze 17 different gene expression data sets from different tissue in Bipolar Disorder using GEO2R and manual analysis, of which 15 contained significant differential gene expression results. We use STRING and Cytoscape to examine Gene Ontology to find significantly affected genetic pathways. We identify hub genes using cytoHubba, a plugin in Cytoscape. We find genes common to data sets of the same material or subtype. Results: 12 out of 15 data sets are enriched for immune system and RNA related pathways. 9 out of 15 data sets are enriched for neurocognitive and metal ion related GO terms. Analysis of Bipolar Disorder Type 1 vs Bipolar Disorder Type 2 revealed most differentially expressed genes were related to immune function, especially cytokines. Terms related to synaptic signaling and neurotransmitter secretion were found in down-regulated GO terms while terms related to neuron apoptosis and death were up-regulated. We identify the gene SNCA as a potential biomarker for overall Bipolar Disorder diagnosis due to its prevalence in our data sets. Conclusions: The immune system and RNA related pathways are significantly enriched across the Bipolar Disorder data sets. The role of these pathways is likely more critically important to the function of Bipolar Disorder than currently understood. Further studies should clearly label the subtype of Bipolar Disorder used in their research and more effort needs to be undertaken to collect samples from Cyclothymic Disorder and Bipolar Disorder Type 2.

2.
Brain Behav Immun ; 118: 149-166, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38423397

RESUMO

Macrophages (MΦ) infected with human immunodeficiency virus (HIV)-1 or activated by its envelope protein gp120 exert neurotoxicity. We found previously that signaling via p38 mitogen-activated protein kinase (p38 MAPK) is essential to the neurotoxicity of HIVgp120-stimulated MΦ. However, the associated downstream pathways remained elusive. Here we show that cysteinyl-leukotrienes (CysLT) released by HIV-infected or HIVgp120 stimulated MΦ downstream of p38 MAPK critically contribute to neurotoxicity. SiRNA-mediated or pharmacological inhibition of p38 MAPK deprives MΦ of CysLT synthase (LTC4S) and, pharmacological inhibition of the cysteinyl-leukotriene receptor 1 (CYSLTR1) protects cerebrocortical neurons against toxicity of both gp120-stimulated and HIV-infected MΦ. Components of the CysLT pathway are differentially regulated in brains of HIV-infected individuals and a transgenic mouse model of NeuroHIV (HIVgp120tg). Moreover, genetic ablation of LTC4S or CysLTR1 prevents neuronal damage and impairment of spatial memory in HIVgp120tg mice. Altogether, our findings suggest a novel critical role for cysteinyl-leukotrienes in HIV-associated brain injury.


Assuntos
Cisteína , Infecções por HIV , HIV-1 , Camundongos , Humanos , Animais , HIV-1/metabolismo , Macrófagos/metabolismo , Leucotrienos/metabolismo , Neurônios/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Camundongos Transgênicos , Infecções por HIV/metabolismo
3.
Brain Behav Immun ; 118: 1-21, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38360376

RESUMO

Human immunodeficiency virus-1 (HIV-1) infects the central nervous system (CNS) and causes HIV-associated neurocognitive disorders (HAND) in about half of the population living with the virus despite combination anti-retroviral therapy (cART). HIV-1 activates the innate immune system, including the production of type 1 interferons (IFNs) α and ß. Transgenic mice expressing HIV-1 envelope glycoprotein gp120 (HIVgp120tg) in the CNS develop memory impairment and share key neuropathological features and differential CNS gene expression with HIV patients, including the induction of IFN-stimulated genes (ISG). Here we show that knocking out IFNß (IFNßKO) in HIVgp120tg and non-tg control mice impairs recognition and spatial memory, but does not affect anxiety-like behavior, locomotion, or vision. The neuropathology of HIVgp120tg mice is only moderately affected by the KO of IFNß but in a sex-dependent fashion. Notably, in cerebral cortex of IFNßKO animals presynaptic terminals are reduced in males while neuronal dendrites are reduced in females. The IFNßKO results in the hippocampal CA1 region of both male and female HIVgp120tg mice in an ameliorated loss of neuronal presynaptic terminals but no protection of neuronal dendrites. Only female IFNß-deficient HIVgp120tg mice display diminished microglial activation in cortex and hippocampus and increased astrocytosis in hippocampus compared to their IFNß-expressing counterparts. RNA expression for some immune genes and ISGs is also affected in a sex-dependent way. The IFNßKO abrogates or diminishes the induction of MX1, DDX58, IRF7 and IRF9 in HIVgp120tg brains of both sexes. Expression analysis of neurotransmission related genes reveals an influence of IFNß on multiple components with more pronounced changes in IFNßKO females. In contrast, the effects of IFNßKO on MAPK activities are independent of sex with pronounced reduction of active ERK1/2 but also of active p38 in the HIVgp120tg brain. In summary, our findings show that the absence of IFNß impairs memory dependent behavior and modulates neuropathology in HIVgp120tg brains, indicating that its absence may facilitate development of HAND. Moreover, our data suggests that endogenous IFNß plays a vital role in maintaining neuronal homeostasis and memory function.


Assuntos
Infecções por HIV , HIV-1 , Interferon beta , Animais , Feminino , Masculino , Camundongos , Encéfalo/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Interferon beta/metabolismo , Camundongos Transgênicos
4.
Nat Rev Neurol ; 19(11): 668-687, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37816937

RESUMO

People living with HIV are affected by the chronic consequences of neurocognitive impairment (NCI) despite antiretroviral therapies that suppress viral replication, improve health and extend life. Furthermore, viral suppression does not eliminate the virus, and remaining infected cells may continue to produce viral proteins that trigger neurodegeneration. Comorbidities such as diabetes mellitus are likely to contribute substantially to CNS injury in people living with HIV, and some components of antiretroviral therapy exert undesirable side effects on the nervous system. No treatment for HIV-associated NCI has been approved by the European Medicines Agency or the US Food and Drug Administration. Historically, roadblocks to developing effective treatments have included a limited understanding of the pathophysiology of HIV-associated NCI and heterogeneity in its clinical manifestations. This heterogeneity might reflect multiple underlying causes that differ among individuals, rather than a single unifying neuropathogenesis. Despite these complexities, accelerating discoveries in HIV neuropathogenesis are yielding potentially druggable targets, including excessive immune activation, metabolic alterations culminating in mitochondrial dysfunction, dysregulation of metal ion homeostasis and lysosomal function, and microbiome alterations. In addition to drug treatments, we also highlight the importance of non-pharmacological interventions. By revisiting mechanisms implicated in NCI and potential interventions addressing these mechanisms, we hope to supply reasons for optimism in people living with HIV affected by NCI and their care providers.


Assuntos
Doenças do Sistema Nervoso Central , Disfunção Cognitiva , Infecções por HIV , Humanos , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/terapia
6.
BMC Public Health ; 23(1): 1584, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598150

RESUMO

BACKGROUND: Health disparities in underserved communities, such as inadequate healthcare access, impact COVID-19 disease outcomes. These disparities are evident in Hispanic populations nationwide, with disproportionately high infection and mortality rates. Furthermore, infected individuals can develop long COVID with sustained impacts on quality of life. The goal of this study was to identify immune and endothelial factors that are associated with COVID-19 outcomes in Riverside County, a high-risk and predominantly Hispanic community, and investigate the long-term impacts of COVID-19 infection. METHODS: 112 participants in Riverside County, California, were recruited according to the following criteria: healthy control (n = 23), outpatients with moderate infection (outpatient, n = 33), ICU patients with severe infection (hospitalized, n = 33), and individuals recovered from moderate infection (n = 23). Differences in outcomes between Hispanic and non-Hispanic individuals and presence/absence of co-morbidities were evaluated. Circulating immune and vascular biomarkers were measured by ELISA, multiplex analyte assays, and flow cytometry. Follow-up assessments for long COVID, lung health, and immune and vascular changes were conducted after recovery (n = 23) including paired analyses of the same participants. RESULTS: Compared to uninfected controls, the severe infection group had a higher proportion of Hispanic individuals (n = 23, p = 0.012) than moderate infection (n = 8, p = 0.550). Disease severity was associated with changes in innate monocytes and neutrophils, lymphopenia, disrupted cytokine production (increased IL-8 and IP-10/CXCL10 but reduced IFNλ2/3 and IFNγ), and increased endothelial injury (myoglobin, VCAM-1). In the severe infection group, a machine learning model identified LCN2/NGAL, IL-6, and monocyte activation as parameters associated with fatality while anti-coagulant therapy was associated with survival. Recovery from moderate COVID infection resulted in long-term immune changes including increased monocytes/lymphocytes and decreased neutrophils and endothelial markers. This group had a lower proportion of co-morbidities (n = 8, p = 1.0) but still reported symptoms associated with long COVID despite recovered pulmonary function. CONCLUSION: This study indicates increased severity of COVID-19 infection in Hispanic individuals of Riverside County, California. Infection resulted in immunological and vascular changes and long COVID symptoms that were sustained for up to 11 months, however, lung volume and airflow resistance was recovered. Given the immune and behavioral impacts of long COVID, the potential for increased susceptibility to infections and decreased quality of life in high-risk populations warrants further investigation.


Assuntos
COVID-19 , Humanos , Síndrome de COVID-19 Pós-Aguda , Qualidade de Vida , California/epidemiologia , Gravidade do Paciente
7.
Sci Rep ; 13(1): 8213, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217558

RESUMO

Counting cells is a cornerstone of tracking disease progression in neuroscience. A common approach for this process is having trained researchers individually select and count cells within an image, which is not only difficult to standardize but also very time-consuming. While tools exist to automatically count cells in images, the accuracy and accessibility of such tools can be improved. Thus, we introduce a novel tool ACCT: Automatic Cell Counting with Trainable Weka Segmentation which allows for flexible automatic cell counting via object segmentation after user-driven training. ACCT is demonstrated with a comparative analysis of publicly available images of neurons and an in-house dataset of immunofluorescence-stained microglia cells. For comparison, both datasets were manually counted to demonstrate the applicability of ACCT as an accessible means to automatically quantify cells in a precise manner without the need for computing clusters or advanced data preparation.


Assuntos
Processamento de Imagem Assistida por Computador , Comportamento de Utilização de Ferramentas , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Contagem de Células/métodos , Neurônios
8.
Mitochondrion ; 70: 31-40, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36925028

RESUMO

For over two decades, highly active antiretroviral therapy (HAART) was able to help prolong the life expectancy of people living with HIV-1 (PLWH) and eliminate the virus to an undetectable level. However, an increased prevalence of HIV- associated neurocognitive disorders (HAND) was observed. These symptoms range from neuronal dysfunction to cell death. Among the markers of neuronal deregulation, we cite the alteration of synaptic plasticity and neuronal communications. Clinically, these dysfunctions led to neurocognitive disorders such as learning alteration and loss of spatial memory, which promote premature brain aging even in HAART-treated patients. In support of these observations, we showed that the gp120 protein deregulates miR-499-5p and its downstream target, the calcineurin (CaN) protein. The gp120 protein also promotes the accumulation of calcium (Ca2+) and reactive oxygen species (ROS) inside the neurons leading to the activation of CaN and the inhibition of miR-499-5p. gp120 protein also caused mitochondrial fragmentation and changes in shape and size. The use of mimic miR-499 restored mitochondrial functions, appearance, and size. These results demonstrated the additional effect of the gp120 protein on neurons through the miR-499-5p/calcineurin pathway.


Assuntos
Infecções por HIV , HIV-1 , MicroRNAs , Humanos , HIV-1/metabolismo , Calcineurina/metabolismo , Calcineurina/farmacologia , Encéfalo/metabolismo , Morte Celular , MicroRNAs/genética , MicroRNAs/metabolismo
9.
Cells ; 11(13)2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35805207

RESUMO

BACKGROUND: Combination antiretroviral therapy (cART) has transformed HIV infection from a terminal disease to a manageable chronic health condition, extending patients' life expectancy to that of the general population. However, the incidence of HIV-associated neurocognitive disorders (HANDs) has persisted despite virological suppression. Patients with HIV display persistent signs of immune activation and inflammation despite cART. The arachidonic acid (AA) cascade is an important immune response system responsible for both pro- and anti-inflammatory processes. METHODS: Lipidomics, mRNA and Western blotting analysis provide valuable insights into the molecular mechanisms surrounding arachidonic acid metabolism and the resulting inflammation caused by perturbations thereof. RESULTS: Here, we report the presence of inflammatory eicosanoids in the brains of a transgenic mouse model of NeuroHIV that expresses soluble HIV-1 envelope glycoprotein in glial cells (HIVgp120tg mice). Additionally, we report that the effect of LTC4S knockout in HIVgp120tg mice resulted in the sexually dimorphic transcription of COX- and 5-LOX-related genes. Furthermore, the absence of LTC4S suppressed ERK1/2 and p38 MAPK signaling activity in female mice only. The mass spectrometry-based lipidomic profiling of these mice reveals beneficial alterations to lipids in the brain. CONCLUSION: Targeting the AA cascade may hold potential in the treatment of neuroinflammation observed in NeuroHIV and HANDs.


Assuntos
Infecções por HIV , Lipidômica , Animais , Ácido Araquidônico/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Eicosanoides/metabolismo , Feminino , Glutationa Transferase , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/complicações , Humanos , Inflamação/metabolismo , Camundongos , Camundongos Transgênicos
10.
Front Aging Neurosci ; 14: 811481, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615594

RESUMO

HIV-associated neurocognitive disorders (HAND) remain an unsolved problem that persists despite using antiretroviral therapy. We have obtained data showing that HIV-gp120 protein contributes to neurodegeneration through metabolic reprogramming. This led to decreased ATP levels, lower mitochondrial DNA copy numbers, and loss of mitochondria cristae, all-important for mitochondrial biogenesis. gp120 protein also disrupted mitochondrial movement and synaptic plasticity. Searching for the mechanisms involved, we found that gp120 alters the cyclic AMP response element-binding protein (CREB) phosphorylation on serine residue 133 necessary for its function as a transcription factor. Since CREB regulates the promoters of PGC1α and BDNF genes, we found that CREB dephosphorylation causes PGC1α and BDNF loss of functions. The data was validated in vitro and in vivo. The negative effect of gp120 was alleviated in cells and animals in the presence of rolipram, an inhibitor of phosphodiesterase protein 4 (PDE4), restoring CREB phosphorylation. We concluded that HIV-gp120 protein contributes to HAND via inhibition of CREB protein function.

11.
Cardiovasc Drugs Ther ; 36(2): 201-215, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33459922

RESUMO

PURPOSE: HIV infection is consistently associated with an increased risk of atherosclerotic cardiovascular disease, but the underlying mechanisms remain elusive. HIV protein Tat, a transcriptional activator of HIV, has been shown to activate NF-κB signaling and promote inflammation in vitro. However, the atherogenic effects of HIV Tat have not been investigated in vivo. Macrophages are one of the major cell types involved in the initiation and progression of atherosclerosis. We and others have previously revealed the important role of IκB kinase ß (IKKß), a central inflammatory coordinator through activating NF-κB, in the regulation of macrophage functions and atherogenesis. This study investigated the impact of HIV Tat exposure on macrophage functions and atherogenesis. METHODS: To investigate the effects of Tat on macrophage IKKß activation and atherosclerosis development in vivo, myeloid-specific IKKß-deficient LDLR-deficient (IKKßΔMyeLDLR-/-) mice and their control littermates (IKKßF/FLDLR-/-) were exposed to recombinant HIV protein Tat. RESULTS: Exposure to Tat significantly increased atherosclerotic lesion size and plaque vulnerability in IKKßF/FLDLR-/- but not IKKßΔMyeLDLR-/- mice. Deficiency of myeloid IKKß attenuated Tat-elicited macrophage inflammatory responses and atherosclerotic lesional inflammation in IKKßΔMyeLDLR-/- mice. Further, RNAseq analysis demonstrated that HIV protein Tat affects the expression of many atherosclerosis-related genes in vitro in an IKKß-dependent manner. CONCLUSIONS: Our findings reveal atherogenic effects of HIV protein Tat in vivo and demonstrate a pivotal role of myeloid IKKß in Tat-driven atherogenesis.


Assuntos
Aterosclerose , Infecções por HIV , Animais , Aterosclerose/metabolismo , Infecções por HIV/complicações , Infecções por HIV/metabolismo , Infecções por HIV/patologia , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Inflamação/metabolismo , Lipoproteínas LDL , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases , Receptores de LDL/metabolismo
12.
Front Mol Biosci ; 8: 721954, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778371

RESUMO

Early in the HIV pandemic, it became evident that people living with HIV (PLWH) develop a wide range of neurological and neurocognitive complications. Even after the introduction of combination antiretroviral therapy (cART), which dramatically improved survival of PLWH, the overall number of people living with some form of HIV-associated neurocognitive disorders (HAND) seemed to remain unchanged, although the incidence of dementia declined and questions about the incidence and diagnosis of the mildest form of HAND arose. To better understand this complex disease, several transcriptomic analyses have been conducted in autopsy samples, as well as in non-human primates and small animal rodent models. However, genetic studies in the HIV field have mostly focused on the genetic makeup of the immune system. Much less is known about the genetic underpinnings of HAND. Here, we provide a summary of reported transcriptomic and epigenetic changes in HAND, as well as some of the potential genetic underpinnings that have been linked to HAND, and discuss future directions with hurdles to overcome and angles that remain to be explored.

13.
Am J Physiol Lung Cell Mol Physiol ; 321(4): L726-L733, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34468208

RESUMO

Lipocalin-2 (LCN2) is an inflammatory mediator best known for its role as an innate acute-phase protein. LCN2 mediates the innate immune response to pathogens by sequestering iron, thereby inhibiting pathogen growth. Although LCN2 and its bacteriostatic properties are well studied, other LCN2 functions in the immune response to inflammatory stimuli are less well understood, such as its role as a chemoattractant and involvement in the regulation of cell migration and apoptosis. In the lungs, most studies thus far investigating the role of LCN2 in the immune response have looked at pathogenic inflammatory stimuli. Here, we compile data that explore the role of LCN2 in the immune response to various inflammatory stimuli in an effort to differentiate between protective versus detrimental roles of LCN2.


Assuntos
Imunidade Inata/imunologia , Mediadores da Inflamação/metabolismo , Lipocalina-2/metabolismo , Pneumonia/patologia , Animais , Apoptose/fisiologia , Bactérias/crescimento & desenvolvimento , Movimento Celular/fisiologia , Humanos , Inflamação/patologia , Ferro/metabolismo , Pulmão/patologia , Macrófagos/imunologia , Camundongos , Neutrófilos/imunologia
14.
Viruses ; 13(2)2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-33498715

RESUMO

Viral infections remain a global public health concern and cause a severe societal and economic burden. At the organismal level, the innate immune system is essential for the detection of viruses and constitutes the first line of defense. Viral components are sensed by host pattern recognition receptors (PRRs). PRRs can be further classified based on their localization into Toll-like receptors (TLRs), C-type lectin receptors (CLR), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), NOD-like receptors (NLRs) and cytosolic DNA sensors (CDS). TLR and RLR signaling results in production of type I interferons (IFNα and -ß) and pro-inflammatory cytokines in a cell-specific manner, whereas NLR signaling leads to the production of interleukin-1 family proteins. On the other hand, CLRs are capable of sensing glycans present in viral pathogens, which can induce phagocytic, endocytic, antimicrobial, and pro- inflammatory responses. Peripheral immune sensing of viruses and the ensuing cytokine response can significantly affect the central nervous system (CNS). But viruses can also directly enter the CNS via a multitude of routes, such as the nasal epithelium, along nerve fibers connecting to the periphery and as cargo of infiltrating infected cells passing through the blood brain barrier, triggering innate immune sensing and cytokine responses directly in the CNS. Here, we review mechanisms of viral immune sensing and currently recognized consequences for the CNS of innate immune responses to viruses.


Assuntos
Sistema Nervoso Central/imunologia , Sistema Nervoso Central/virologia , Citocinas/metabolismo , Imunidade Inata , Viroses/imunologia , Animais , Humanos , Inflamassomos , Interferon Tipo I/metabolismo , Lectinas Tipo C/metabolismo , Receptores de Reconhecimento de Padrão , Transdução de Sinais , Receptores Toll-Like/metabolismo
15.
J Neuroimmune Pharmacol ; 16(1): 90-112, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-31385157

RESUMO

HIV-associated neurocognitive disorders (HAND) persist despite the successful introduction of combination antiretroviral therapy (cART). While insufficient concentration of certain antiretrovirals (ARV) may lead to incomplete viral suppression in the brain, many ARVs are found to cause neuropsychiatric adverse effects, indicating their penetration into the central nervous system (CNS). Several lines of evidence suggest shared critical roles of oxidative and endoplasmic reticulum stress, compromised neuronal energy homeostasis, and autophagy in the promotion of neuronal dysfunction associated with both HIV-1 infection and long-term cART or ARV use. As the lifespans of HIV patients are increased, unique challenges have surfaced. Longer lives convey prolonged exposure of the CNS to viral toxins, neurotoxic ARVs, polypharmacy with prescribed or illicit drug use, and age-related diseases. All of these factors can contribute to increased risks for the development of neuropsychiatric conditions and cognitive impairment, which can significantly impact patient well-being, cART adherence, and overall health outcome. Strategies to increase the penetration of cART into the brain to lower viral toxicity may detrimentally increase ARV neurotoxicity and neuropsychiatric adverse effects. As clinicians attempt to control peripheral viremia in an aging population of HIV-infected patients, they must navigate an increasingly complex myriad of comorbidities, pharmacogenetics, drug-drug interactions, and psychiatric and cognitive dysfunction. Here we review in comparison to the neuropathological effects of HIV-1 the available information on neuropsychiatric adverse effects and neurotoxicity of clinically used ARV and cART. It appears altogether that future cART aiming at controlling HIV-1 in the CNS and preventing HAND will require an intricate balancing act of suppressing viral replication while minimizing neurotoxicity, impairment of neurocognition, and neuropsychiatric adverse effects. Graphical abstract Schematic summary of the effects exerted on the brain and neurocognitive function by HIV-1 infection, comorbidities, psychostimulatory, illicit drugs, therapeutic drugs, such as antiretrovirals, the resulting polypharmacy and aging, as well as the potential interactions of all these factors.


Assuntos
Complexo AIDS Demência/tratamento farmacológico , Fármacos Anti-HIV/farmacologia , HIV-1/efeitos dos fármacos , Transtornos Neurocognitivos/induzido quimicamente , Neurônios/efeitos dos fármacos , Fármacos Anti-HIV/efeitos adversos , Fármacos Anti-HIV/uso terapêutico , Terapia Antirretroviral de Alta Atividade , Comorbidade , Interações Medicamentosas , HIV-1/patogenicidade , Humanos , Drogas Ilícitas/farmacocinética , Transtornos Neurocognitivos/etiologia , Neurônios/virologia , Polimedicação
16.
J Neuroimmune Pharmacol ; 15(4): 743-764, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32929575

RESUMO

HIV infection and drug use intersect epidemiologically, and their combination can result in complex effects on brain and behavior. The extent to which drugs affect the health of persons with HIV (PWH) depends on many factors including drug characteristics, use patterns, stage of HIV disease and its treatment, comorbid factors, and age. To consider the range of drug effects, we have selected two that are in common use by PWH: methamphetamine and cannabis. We compare the effects of methamphetamine with those of cannabis, to illustrate how substances may potentiate, worsen, or even buffer the effects of HIV on the CNS. Data from human, animal, and ex vivo studies provide insights into how these drugs have differing effects on the persistent inflammatory state that characterizes HIV infection, including effects on viral replication, immune activation, mitochondrial function, gut permeability, blood brain barrier integrity, glia and neuronal signaling. Moving forward, we consider how these mechanistic insights may inform interventions to improve brain outcomes in PWH. This review summarizes literature from clinical and preclinical studies demonstrating the adverse effects of METH, as well as the potentially beneficial effects of cannabis, on the interacting systemic (e.g., gut barrier leakage/microbial translocation, immune activation, inflammation) and CNS-specific (e.g., glial activation/neuroinflammation, neural injury, mitochondrial toxicity/oxidative stress) mechanisms underlying HIV-associated neurocognitive disorders.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Uso da Maconha , Metanfetamina/efeitos adversos , Transtornos Relacionados ao Uso de Anfetaminas/epidemiologia , Transtornos Relacionados ao Uso de Anfetaminas/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Cannabis , Infecções por HIV/epidemiologia , Infecções por HIV/metabolismo , Humanos , Uso da Maconha/epidemiologia , Uso da Maconha/metabolismo , Transtornos Neurocognitivos/tratamento farmacológico , Transtornos Neurocognitivos/metabolismo
17.
J Neuroinflammation ; 17(1): 226, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727588

RESUMO

BACKGROUND: HIV-1 infection remains a major public health concern despite effective combination antiretroviral therapy (cART). The virus enters the central nervous system (CNS) early in infection and continues to cause HIV-associated neurocognitive disorders (HAND). The pathogenic mechanisms of HIV-associated brain injury remain incompletely understood. Since HIV-1 activates the type I interferon system, which signals via interferon-α receptor (IFNAR) 1 and 2, this study investigated the potential role of IFNAR1 in HIV-induced neurotoxicity. METHODS: We cross-bred HIVgp120-transgenic (tg) and IFNAR1 knockout (IFNAR1KO) mice. At 11-14 months of age, we performed a behavioral assessment and subsequently analyzed neuropathological alterations using deconvolution and quantitative immunofluorescence microscopy, quantitative RT-PCR, and bioinformatics. Western blotting of brain lysates and an in vitro neurotoxicity assay were employed for analysis of cellular signaling pathways. RESULTS: We show that IFNAR1KO results in partial, sex-dependent protection from neuronal injury and behavioral deficits in a transgenic model of HIV-induced brain injury. The IFNAR1KO rescues spatial memory and ameliorates loss of presynaptic terminals preferentially in female HIVgp120tg mice. Similarly, expression of genes involved in neurotransmission reveals sex-dependent effects of IFNAR1KO and HIVgp120. In contrast, IFNAR1-deficiency, independent of sex, limits damage to neuronal dendrites, microgliosis, and activation of p38 MAPK and restores ERK activity in the HIVgp120tg brain. In vitro, inhibition of p38 MAPK abrogates neurotoxicity caused similarly by blockade of ERK kinase and HIVgp120. CONCLUSION: Our findings indicate that IFNAR1 plays a pivotal role in both sex-dependent and independent processes of neuronal injury and behavioral impairment triggered by HIV-1.


Assuntos
Complexo AIDS Demência/metabolismo , Complexo AIDS Demência/patologia , Encéfalo/patologia , Neurônios/patologia , Receptor de Interferon alfa e beta/metabolismo , Animais , Encéfalo/metabolismo , Feminino , Proteína gp120 do Envelope de HIV , HIV-1 , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo
18.
Brain Behav Immun ; 89: 184-199, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32534984

RESUMO

People living with HIV (PLWH) continue to develop HIV-associated neurocognitive disorders despite combination anti-retroviral therapy. Lipocalin-2 (LCN2) is an acute phase protein that has been implicated in neurodegeneration and is upregulated in a transgenic mouse model of HIV-associated brain injury. Here we show that LCN2 is significantly upregulated in neocortex of a subset of HIV-infected individuals with brain pathology and correlates with viral load in CSF and pro-viral DNA in neocortex. However, the question if LCN2 contributes to HIV-associated neurotoxicity or is part of a protective host response required further investigation. We found that the knockout of LCN2 in transgenic mice expressing HIVgp120 in the brain (HIVgp120tg) abrogates behavioral impairment, ameliorates neuronal damage, and reduces microglial activation in association with an increase of the neuroprotective CCR5 ligand CCL4. In vitro experiments show that LCN2 neurotoxicity also depends on microglia and p38 MAPK activity. Genetic ablation of CCR5 in LCN2-deficient HIVgp120tg mice restores neuropathology, suggesting that LCN2 overrides neuroprotection mediated by CCR5 and its chemokine ligands. RNA expression of 168 genes involved in neurotransmission reveals that neuronal injury and protection are each associated with genotype- and sex-specific patterns affecting common neural gene networks. In conclusion, our study identifies LCN2 as a novel factor in HIV-associated brain injury involving CCR5, p38 MAPK and microglia. Furthermore, the mechanistic interaction between LCN2 and CCR5 may serve as a diagnostic and therapeutic target in HIV patients at risk of developing brain pathology and neurocognitive impairment.


Assuntos
Infecções por HIV , HIV-1 , Proteínas de Fase Aguda/genética , Animais , Infecções por HIV/complicações , HIV-1/metabolismo , Humanos , Lipocalina-2/genética , Camundongos , Neurônios/metabolismo , Receptores CCR5/genética
19.
Viruses ; 12(4)2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283831

RESUMO

Methamphetamine (Meth) abuse is common among humans with immunodeficiency virus (HIV). The HIV-1 regulatory protein, trans-activator of transcription (Tat), has been described to induce changes in brain gene transcription that can result in impaired reward circuitry, as well as in inflammatory processes. In transgenic mice with doxycycline-induced Tat protein expression in the brain, i.e., a mouse model of neuroHIV, we tested global gene expression patterns induced by Meth sensitization. Meth-induced locomotor sensitization included repeated daily Meth or saline injections for seven days and Meth challenge after a seven-day abstinence period. Brain samples were collected 30 min after the Meth challenge. We investigated global gene expression changes in the caudate putamen, an area with relevance in behavior and HIV pathogenesis, and performed pathway and transcriptional factor usage predictions using systems biology strategies. We found that Tat expression alone had a very limited impact in gene transcription after the Meth challenge. In contrast, Meth-induced sensitization in the absence of Tat induced a global suppression of gene transcription. Interestingly, the interaction between Tat and Meth broadly prevented the Meth-induced global transcriptional suppression, by maintaining regulation pathways, and resulting in gene expression profiles that were more similar to the controls. Pathways associated with mitochondrial health, initiation of transcription and translation, as well as with epigenetic control, were heavily affected by Meth, and by its interaction with Tat in anti-directional ways. A series of systems strategies have predicted several components impacted by these interactions, including mitochondrial pathways, mTOR/RICTOR, AP-1 transcription factor, and eukaryotic initiation factors involved in transcription and translation. In spite of the antagonizing effects of Tat, a few genes identified in relevant gene networks remained downregulated, such as sirtuin 1, and the amyloid precursor protein (APP). In conclusion, Tat expression in the brain had a low acute transcriptional impact but strongly interacted with Meth sensitization, to modify effects in the global transcriptome.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/genética , Metanfetamina/farmacologia , Biologia de Sistemas , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Animais , Sítios de Ligação , Encéfalo/virologia , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Ligação Proteica , Biologia de Sistemas/métodos , Fatores de Transcrição/metabolismo
20.
mBio ; 10(5)2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31551335

RESUMO

A major challenge in finding a cure for HIV-1/AIDS is the difficulty in identifying and eradicating persistent reservoirs of replication-competent provirus. Long noncoding RNAs (lncRNAs, >200 nucleotides) are increasingly recognized to play important roles in pathophysiology. Here, we report the first genome-wide expression analysis of lncRNAs in HIV-1-infected primary monocyte-derived macrophages (MDMs). We identified an lncRNA, which we named HIV-1-enhanced lncRNA (HEAL), that is upregulated by HIV-1 infection of MDMs, microglia, and T lymphocytes. Peripheral blood mononuclear cells of HIV-1-infected individuals show elevated levels of HEAL Importantly, HEAL is a broad enhancer of multiple HIV-1 strains because depletion of HEAL inhibited X4, R5, and dual-tropic HIV replications and the inhibition was rescued by HEAL overexpression. HEAL forms a complex with the RNA-binding protein FUS, which facilitates HIV replication through at least two mechanisms: (i) HEAL-FUS complex binds the HIV promoter and enhances recruitment of the histone acetyltransferase p300, which positively regulates HIV transcription by increasing histone H3K27 acetylation and P-TEFb enrichment on the HIV promoter, and (ii) HEAL-FUS complex is enriched at the promoter of the cyclin-dependent kinase 2 gene, CDK2, to enhance CDK2 expression. Notably, HEAL knockdown and knockout mediated by RNA interference (RNAi) and CRISPR-Cas9, respectively, prevent HIV-1 recrudescence in T cells and microglia upon cessation of azidothymidine treatment in vitro Our results suggest that silencing of HEAL or perturbation of the HEAL-FUS ribonucleoprotein complex could provide a new epigenetic silencing strategy to eradicate viral reservoirs and effect a cure for HIV-1/AIDS.IMPORTANCE Despite our increased understanding of the functions of lncRNAs, their potential to develop HIV/AIDS cure strategies remains unexplored. A genome-wide analysis of lncRNAs in HIV-1-infected primary monocyte-derived macrophages (MDMs) was performed, and 1,145 differentially expressed lncRNAs were identified. An lncRNA named HIV-1-enhanced lncRNA (HEAL) is upregulated by HIV-1 infection and promotes HIV replication in T cells and macrophages. HEAL forms a complex with the RNA-binding protein FUS to enhance transcriptional coactivator p300 recruitment to the HIV promoter. Furthermore, HEAL knockdown and knockout prevent HIV-1 recrudescence in T cells and microglia upon cessation of azidothymidine treatment, suggesting HEAL as a potential therapeutic target to cure HIV-1/AIDS.


Assuntos
Epigênese Genética , Regulação Viral da Expressão Gênica/fisiologia , Infecções por HIV/fisiopatologia , HIV-1/fisiologia , Regiões Promotoras Genéticas/fisiologia , RNA Longo não Codificante/fisiologia , Replicação Viral/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA