Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1273330, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143578

RESUMO

The above-ground (phyllosphere) plant microbiome is increasingly recognized as an important component of plant health. We hypothesized that phyllosphere bacterial recruitment may be disrupted in a greenhouse setting, and that adding a bacterial amendment would therefore benefit the health and growth of host plants. Using a newly developed synthetic phyllosphere bacterial microbiome for tomato (Solanum lycopersicum), we tested this hypothesis across multiple trials by manipulating microbial inoculation of leaves and measuring subsequent plant growth and reproductive success, comparing results from plants grown in both greenhouse and field settings. We confirmed that greenhouse-grown plants have a relatively depauperate phyllosphere bacterial microbiome, which both makes them an ideal system for testing the impact of phyllosphere communities on plant health and important targets for microbial amendments as we move towards increased agricultural sustainability. We find that the addition of the synthetic microbial community early in greenhouse growth leads to an increase in fruit production in this setting, implicating the phyllosphere microbiome as a key component of plant fitness and emphasizing the role that these bacterial microbiomes likely play in the ecology and evolution of plant communities.

2.
New Phytol ; 234(6): 2018-2031, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34668201

RESUMO

Water and nutrient acquisition are key drivers of plant health and ecosystem function. These factors impact plant physiology directly as well as indirectly through soil- and root-associated microbial responses, but how they in turn affect aboveground plant-microbe interactions are not known. Through experimental manipulations in the field and growth chamber, we examine the interacting effects of water stress, soil fertility, and arbuscular mycorrhizal fungi on bacterial and fungal communities of the tomato (Solanum lycopersicum) phyllosphere. Both water stress and mycorrhizal disruption reduced leaf bacterial richness, homogenized bacterial community composition among plants, and reduced the relative abundance of dominant fungal taxa. We observed striking parallelism in the individual microbial taxa in the phyllosphere affected by irrigation and mycorrhizal associations. Our results show that soil conditions and belowground interactions can shape aboveground microbial communities, with important potential implications for plant health and sustainable agriculture.


Assuntos
Microbiota , Micorrizas , Solanum lycopersicum , Bactérias , Desidratação , Ecossistema , Solanum lycopersicum/microbiologia , Micorrizas/fisiologia , Solo , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...