Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 905: 167232, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37734608

RESUMO

Sorption of organic molecules on mineral surfaces can occur through several binding mechanisms of varying strength. Here, we investigated the importance of inner-sphere P-O-Fe bonds in synthetic and natural mineral-organic associations. Natural organic matter such as water extracted soil organic matter (WESOM) and extracellular polymeric substances (EPS) from liquid bacterial cultures were adsorbed to goethite and examined by FTIR spectroscopy and P K-edge NEXAFS spectroscopy. Natural particles from a Bg soil horizon (Gleysol) were subjected to X-ray fluorescence (XRF) mapping, NanoSIMS imaging, and NEXAFS spectro-microscopy at the P K-edge. Inner-sphere P-O-Fe bonds were identified for both, adsorbed EPS extracts and adsorbed WESOMs. Characteristic infrared peaks for P-O-Fe stretching vibrations are present but cannot unambiguously be interpreted due to possible interferences with mono- and polysaccharides. For the Bg horizon, P was only found on Fe oxides, covering the entire surface at different concentrations, but not on clay minerals. Linear combination fitting of NEXAFS spectra indicates that this adsorbed P is mainly a mixture of orthophosphate and organic P compounds. By combining atomic force microscopy (AFM) images with STXM-generated C and Fe distribution maps, we show that the Fe oxide surfaces were fully coated with organic matter. In contrast, clay minerals revealed a much lower C signal. The C NEXAFS spectra taken on the Fe oxides had a substantial contribution of carboxylic C, aliphatic C, and O-alkyl C, which is a composition clearly different from pure adsorbed EPS or aromatic-rich lignin-derived compounds. Our data show that inner-sphere P-O-Fe bonds are important for the association of Fe oxides with soil organic matter. In the Bg horizon, carboxyl groups and orthophosphate compete with the organic P compounds for adsorption sites.

2.
Nature ; 621(7978): 312-317, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37532941

RESUMO

The balance between degradation and preservation of sedimentary organic carbon (OC) is important for global carbon and oxygen cycles1. The relative importance of different mechanisms and environmental conditions contributing to marine sedimentary OC preservation, however, remains unclear2-8. Simple organic molecules can be geopolymerized into recalcitrant forms by means of the Maillard reaction5, although reaction kinetics at marine sedimentary temperatures are thought to be slow9,10. More recent work in terrestrial systems suggests that the reaction can be catalysed by manganese minerals11-13, but the potential for the promotion of geopolymerized OC formation at marine sedimentary temperatures is uncertain. Here we present incubation experiments and find that iron and manganese ions and minerals abiotically catalyse the Maillard reaction by up to two orders of magnitude at temperatures relevant to continental margins where most preservation occurs4. Furthermore, the chemical signature of the reaction products closely resembles dissolved and total OC found in continental margin sediments globally. With the aid of a pore-water model14, we estimate that iron- and manganese-catalysed transformation of simple organic molecules into complex macromolecules might generate on the order of approximately 4.1 Tg C yr-1 for preservation in marine sediments. In the context of perhaps only about 63 Tg C yr-1 variation in sedimentary organic preservation over the past 300 million years6, we propose that variable iron and manganese inputs to the ocean could exert a substantial but hitherto unexplored impact on global OC preservation over geological time.

3.
Nanomaterials (Basel) ; 7(10)2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29035310

RESUMO

Gold nanorods (GNRs) have been fabricated by a novel polymer-immobilised seed mediated method using ultraviolet (UV) photoreduced gold-polymethylmethacrylate (Au-PMMA) nanocomposites as a seed platform and characterised at sub-micron scale regime with synchrotron-based techniques; near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and X-ray fluorescence (XRF) mapping. In this report, it is shown that investigating polymer nanocomposites using combination of XRF mapping and NEXAFS spectromicroscopy can help to see the growth phenomenon from different perspective than conventional characterisation techniques. XRF maps are used to explore distribution of the constituent elements and showing how polymer matrix making stripe patterns along with regions where GNRs are formed. NEXAFS carbon (C) K-edge spectra have been taken at three different stages of synthesis: (1) on Au-PMMA nanocomposites before UV irradiation, (2) after gold nanoparticles formation, and (3) after GNRs formation. It reveals how polymer matrix has been degraded during GNRs formation and avoiding chemically or physically damage to polymer matrix is crucial to control the formation of GNRs.

4.
J Synchrotron Radiat ; 24(Pt 1): 168-174, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28009556

RESUMO

Collimated plane-grating monochromators (cPGMs), consisting of a plane mirror and plane diffraction grating, are essential optics in synchrotron radiation sources for their remarkable flexibility and good optical characteristics in the soft X-ray region. However, the poor energy transport efficiency of a conventional cPGM (single-layer-coated) degrades the source intensity and leaves reduced flux at the sample, especially for the tender X-ray range (1-4 keV) that covers a large number of K- and L-edges of medium-Z elements, and M-edges of high-Z elements. To overcome this limitation, the use of a multilayer-based cPGM is proposed, combining a multilayer-coated plane mirror with blazed multilayer gratings. With this combination, the effective efficiency of cPGMs can be increased by an order of magnitude compared with the conventional single-layer cPGMs. In addition, higher resolving power can be achieved with improved efficiency by increasing the blaze angle and working at higher diffraction order.

5.
Environ Sci Technol ; 47(10): 5400-8, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23578201

RESUMO

With a model invertebrate animal, we have assessed the fate of magnetic nanoparticles in biologically relevant media, i.e., digestive juices. The toxic potential and the internalization of such nanoparticles by nontarget cells were also examined. The aim of this study was to provide experimental evidence on the formation of Co(2+), Fe(2+), and Fe(3+) ions from CoFe2O4 nanoparticles in the digestive juices of a model organism. Standard toxicological parameters were assessed. Cell membrane stability was tested with a modified method for measurement of its quality. Proton-induced X-ray emission and low energy synchrotron radiation X-ray fluorescence were used to study internalization and distribution of Co and Fe. Co(2+) ions were found to be more toxic than nanoparticles. We confirmed that Co(2+) ions accumulate in the hepatopancreas, but Fe(n+) ions or CoFe2O4 nanoparticles are not retained in vivo. A model biological system with a terrestrial isopod is suited to studies of the potential dissolution of ions and other products from metal-containing nanoparticles in biologically complex media.


Assuntos
Cobalto/metabolismo , Crustáceos/metabolismo , Compostos Férricos/metabolismo , Nanopartículas Metálicas/toxicidade , Administração Oral , Animais , Cátions , Espectrofotometria Atômica
6.
J Neurosci Res ; 91(8): 1050-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23239399

RESUMO

Glucose metabolism is difficult to image with cellular resolution in mammalian brain tissue, particularly with (18) fluorodeoxy-D-glucose (FDG) positron emission tomography (PET). To this end, we explored the potential of synchrotron-based low-energy X-ray fluorescence (LEXRF) to image the stable isotope of fluorine (F) in phosphorylated FDG (DG-6P) at 1 µm(2) spatial resolution in 3-µm-thick brain slices. The excitation-dependent fluorescence F signal at 676 eV varied linearly with FDG concentration between 0.5 and 10 mM, whereas the endogenous background F signal was undetectable in brain. To validate LEXRF mapping of fluorine, FDG was administered in vitro and in vivo, and the fluorine LEXRF signal from intracellular trapped FDG-6P over selected brain areas rich in radial glia was spectrally quantitated at 1 µm(2) resolution. The subsequent generation of spatial LEXRF maps of F reproduced the expected localization and gradients of glucose metabolism in retinal Müller glia. In addition, FDG uptake was localized to periventricular hypothalamic tanycytes, whose morphological features were imaged simultaneously by X-ray absorption. We conclude that the high specificity of photon emission from F and its spatial mapping at ≤1 µm resolution demonstrates the ability to identify glucose uptake at subcellular resolution and holds remarkable potential for imaging glucose metabolism in biological tissue.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/diagnóstico por imagem , Fluordesoxiglucose F18 , Glucose/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Animais , Córtex Cerebral/metabolismo , Metabolismo Energético/fisiologia , Estudos de Viabilidade , Fluorescência , Ratos , Ratos Sprague-Dawley , Raios X
7.
Chemistry ; 18(33): 10196-210, 2012 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-22836392

RESUMO

Fuel cells are one of the most appealing environmentally friendly devices for the effective conversion of chemical energy into electricity and heat, but still there are key barriers to their broad commercialization. In addition to efficiency, a major challenge of fuel-cell technology is the durability of the key components (interconnects, electrodes, and electrolytes) that can be subject to corrosion or undesired morphology and chemical changes occurring under operating conditions. The complementary capabilities of synchrotron-based soft X-ray microscopes in terms of imaging, spectroscopy, spatial and time resolution, and variable probing depths are opening unique opportunities to shed light on the multiple processes occurring in these complex systems at microscopic length scales. This type of information is prerequisite for understanding and controlling the performance and durability of such devices. This paper reviews the most recent efforts in the implementation of these methods for exploring the evolving structure and chemical composition of some key fuel cell components. Recent achievements are illustrated by selected results obtained with simplified versions of proton-exchange fuel-cells (PEFC) and solid-oxide fuel-cells (SOFC), which allow in situ monitoring of the redox reactions resulting in: 1) undesired deposits at interconnects and electrodes (PEFC); 2) material interactions at the electrode-electrolyte interface (PEFC); 3) release of corrosion products to the electrolyte phase (PEFC, and 4) mass-transport processes and structural changes occurring at the high operation temperatures of SOFC and promoted by the polarization.

8.
Toxicol Lett ; 207(2): 128-36, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21925252

RESUMO

The effect of the concentration of cobalt ferrite (CoFe(2)O(4)) nanoparticles (NPs) on their intracellular location and distribution has been explored by synchrotron radiation X-ray and fluorescence microscopy (SR-XRF) monitoring the evolution of NPs elemental composition as well. In cells exposed to low concentrations of CoFe(2)O(4) NPs, the NPs preferentially segregate in the perinuclear region preserving their initial chemical content. At concentrations exceeding 500 µM the XRF spectra indicate the presence of Co and Fe also in the nuclear region, accompanied by sensible changes in the cellular morphology. The increase of the Co/Fe ratio measured in the nuclear compartment indicates that above certain concentrations the CoFe(2)O(4) NPs intracellular distribution could be accompanied by biodegradation resulting in Co accumulation in the nucleus.


Assuntos
Células 3T3 BALB/metabolismo , Cobalto/metabolismo , Compostos Férricos/metabolismo , Nanopartículas de Magnetita , Animais , Núcleo Celular/metabolismo , Camundongos , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Síncrotrons
9.
Rev Sci Instrum ; 82(4): 043711, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21529017

RESUMO

We present a compact modular apparatus with a flexible design that will be operated at the DiProI beamline of the Fermi@Elettra free electron laser (FEL) for performing static and time-resolved coherent diffraction imaging experiments, taking advantage of the full coherence and variable polarization of the short seeded FEL pulses. The apparatus has been assembled and the potential of the experimental setup is demonstrated by commissioning tests with coherent synchrotron radiation. This multipurpose experimental station will be open to general users after installation at the Fermi@Elettra free electron laser in 2011.


Assuntos
Elétrons , Lasers , Espalhamento de Radiação , Desenho de Equipamento , Luz , Nanotecnologia , Fótons
10.
Phys Chem Chem Phys ; 13(17): 7968-74, 2011 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-21437296

RESUMO

This paper reports a pioneering application of soft X-ray scanning transmission microscopy (STXM), combined with micro-spot X-ray absorption spectroscopy (XAS) and X-ray fluorescence spectroscopy (XRF), for the investigation of the corrosion of metal electrodes in contact with room-temperature ionic liquids (RTIL). Using an open electrochemical cell in vacuo we explore some fundamental aspects of the aggressiveness of the 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)amide ([BMP][TFSA]) RTIL towards Ni under in situ electrochemical polarisation. The possibility of imaging electrochemically-induced morphological features in conjunction with micro-XAS and XRF spectroscopies has provided unprecedented details regarding the space distribution and chemical state of corrosion products.

11.
J Exp Bot ; 62(11): 3929-39, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21447756

RESUMO

Mature developed seeds are physiologically and biochemically committed to store nutrients, principally as starch, protein, oils, and minerals. The composition and distribution of elements inside the aleurone cell layer reflect their biogenesis, structural characteristics, and physiological functions. It is therefore of primary importance to understand the mechanisms underlying metal ion accumulation, distribution, storage, and bioavailability in aleurone subcellular organelles for seed fortification purposes. Synchrotron radiation soft X-ray full-field imaging mode (FFIM) and low-energy X-ray fluorescence (LEXRF) spectromicroscopy were applied to characterize major structural features and the subcellular distribution of physiologically important elements (Zn, Fe, Na, Mg, Al, Si, and P). These direct imaging methods reveal the accumulation patterns between the apoplast and symplast, and highlight the importance of globoids with phytic acid mineral salts and walls as preferential storage structures. C, N, and O chemical topographies are directly linked to the structural backbone of plant substructures. Zn, Fe, Na, Mg, Al, and P were linked to globoid structures within protein storage vacuoles with variable levels of co-localization. Si distribution was atypical, being contained in the aleurone apoplast and symplast, supporting a physiological role for Si in addition to its structural function. These results reveal that the immobilization of metals within the observed endomembrane structures presents a structural and functional barrier and affects bioavailability. The combination of high spatial and chemical X-ray microscopy techniques highlights how in situ analysis can yield new insights into the complexity of the wheat aleurone layer, whose precise biochemical composition, morphology, and structural characteristics are still not unequivocally resolved.


Assuntos
Sementes/ultraestrutura , Triticum/ultraestrutura , Vacúolos/ultraestrutura , Metais/química , Fósforo/química , Ácido Fítico/química , Sementes/química , Espectrometria por Raios X , Síncrotrons , Vacúolos/química , Raios X
12.
J Phys Condens Matter ; 23(8): 083002, 2011 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-21411893

RESUMO

Advances in microscopy techniques based on x-rays have opened unprecedented opportunities in terms of spatial resolution, combined with chemical and morphology sensitivity, to analyze solid, soft and liquid matter. The advent of ultrabright third and fourth generation photon sources and the continuous development of x-ray optics and detectors has pushed the limits of imaging and spectroscopic analysis to structures as small as a few tens of nanometers. Specific interactions of x-rays with matter provide elemental and chemical sensitivity that have made x-ray spectromicroscopy techniques a very attractive tool, complementary to other microscopies, for characterization in all actual research fields. The x-ray penetration power meets the demand to examine samples too thick for electron microscopes implementing 3D imaging and recently also 4D imaging which adds time resolution as well. Implementation of a variety of phase contrast techniques enhances the structural sensitivity, especially for the hard x-ray regime. Implementation of lensless or diffraction imaging helps to enhance the lateral resolution of x-ray imaging to the wavelength dependent diffraction limit.

13.
Part Fibre Toxicol ; 8(1): 7, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21299853

RESUMO

BACKGROUND: Occupational or environmental exposure to asbestos fibres is associated with pleural and parenchymal lung diseases. A histopathologic hallmark of exposure to asbestos is the presence in lung parenchyma of the so-called asbestos bodies. They are the final product of biomineralization processes resulting in deposition of endogenous iron and organic matter (mainly proteins) around the inhaled asbestos fibres. For shedding light on the formation mechanisms of asbestos bodies it is of fundamental importance to characterize at the same length scales not only their structural morphology and chemical composition but also to correlate them to the possible alterations in the local composition of the surrounding tissues. Here we report the first correlative morphological and chemical characterization of untreated paraffinated histological lung tissue samples with asbestos bodies by means of soft X-ray imaging and X-Ray Fluorescence (XRF) microscopy, which reveals new features in the elemental lateral distribution. RESULTS: The X-ray absorption and phase contrast images and the simultaneously monitored XRF maps of tissue samples have revealed the location, distribution and elemental composition of asbestos bodies and associated nanometric structures. The observed specific morphology and differences in the local Si, Fe, O and Mg content provide distinct fingerprints characteristic for the core asbestos fibre and the ferruginous body. The highest Si content is found in the asbestos fibre, while the shell and ferruginous bodies are characterized by strongly increased content of Mg, Fe and O compared to the adjacent tissue. The XRF and SEM-EDX analyses of the extracted asbestos bodies confirmed an enhanced Mg deposition in the organic asbestos coating. CONCLUSIONS: The present report demonstrates the potential of the advanced synchrotron-based X-ray imaging and microspectroscopy techniques for studying the response of the lung tissue to the presence of asbestos fibres. The new results obtained by simultaneous structural and chemical analysis of tissue specimen have provided clear evidence that Mg, in addition to Fe, is also involved in the formation mechanisms of asbestos bodies. This is the first important step to further thorough investigations that will shed light on the physiopathological role of Mg in tissue response to the asbestos toxicity.


Assuntos
Amianto/análise , Asbestose/patologia , Pulmão/química , Pulmão/diagnóstico por imagem , Pulmão/patologia , Microscopia de Fluorescência/métodos , Síncrotrons , Amianto/efeitos adversos , Humanos , Nanopartículas , Radiografia , Espectrometria por Raios X , Raios X
14.
J Plant Res ; 124(1): 165-72, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20422247

RESUMO

Information on localization of Al in tea leaf tissues is required in order to better understand Al tolerance mechanism in this Al-accumulating plant species. Here, we have used low-energy X-ray fluorescence spectro-microscopy (LEXRF) to study localization of Al and other low Z-elements, namely C, O, Mg, Si and P, in fully developed leaves of the tea plant [Camellia sinensis (L.) O. Kuntze]. Plants were grown from seeds for 3 months in a hydroponic solution, and then exposed to 200 microM AlCl(3) for 2 weeks. Epidermal-mesophyll and xylem phloem regions of 20 microm thick cryo-fixed freeze-dried tea-leaf cross-sections were raster scanned with 1.7 and 2.2 keV excitation energies to reach the Al-K and P-K absorption edges. Al was mainly localized in the cell walls of the leaf epidermal cells, while almost no Al signal was obtained from the leaf symplast. The results suggest that the retention of Al in epidermal leaf apoplast represent the main tolerance mechanism to Al in tea plants. In addition LEXRF proved to be a powerful tool for localization of Al in plant tissues, which can help in our understanding of the processes of Al uptake, transport and tolerance in plants.


Assuntos
Alumínio/metabolismo , Camellia sinensis/metabolismo , Microscopia de Fluorescência/métodos , Folhas de Planta/metabolismo , Espectrometria por Raios X/métodos , Camellia sinensis/citologia , Floema/citologia , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Folhas de Planta/citologia , Xilema/citologia
15.
ChemSusChem ; 3(7): 846-50, 2010 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-20564283

RESUMO

Nafion contamination by ferrous-alloy corrosion products, resulting in dramatic drops of the Ohmic potential, is a suspected major failure mode of polymer electrolyte membrane fuel cells that make use of metallic bipolar plates. This study demonstrates the potential of scanning transmission X-ray microscopy combined with X-ray absorption and fluorescence microspectroscopy for exploring corrosion processes of Ni and Fe electrodes in contact with a hydrated Nafion film in a thin-layer cell. The imaged morphology changes of the Ni and Fe electrodes and surrounding Nafion film that result from relevant electrochemical processes are correlated to the spatial distribution, local concentration, and chemical state of Fe and Ni species. The X-ray fluorescence maps and absorption spectra, sampled at different locations, show diffusion of corrosion products within the Nafion film only in the case of the Fe electrodes, whereas the Ni electrodes appear corrosion resistant.


Assuntos
Eletrólitos/química , Polímeros de Fluorcarboneto/química , Ferro/química , Membranas Artificiais , Níquel/química , Corrosão , Eletroquímica , Eletrodos , Microscopia , Espectrometria de Fluorescência , Água/química , Espectroscopia por Absorção de Raios X
16.
J R Soc Interface ; 6 Suppl 5: S641-7, 2009 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-19570794

RESUMO

Biological systems are unique matter with very complex morphology and highly heterogeneous chemical composition dominated by light elements. Discriminating qualitatively at the sub-micrometer level the lateral distribution of constituent elements, and correlating it to the sub-cellular biological structure, continues to be a challenge. The low-energy X-ray fluorescence microspectroscopy, recently implemented in TwinMic scanning transmission mode, has opened up new opportunities for mapping the distribution of the light elements, complemented by morphology information provided by simultaneous acquisition of absorption and phase contrast images. The important new information that can be obtained in bio-related research domains is demonstrated by two pilot experiments with specimens of interest for marine biology and food science. They demonstrate the potential to yield important insights into the structural and compositional enrichment, distribution and correlation of essential trace elements in the lorica of Tintinnopsis radix, and the lateral distribution of trace nutrients in the seeds of wheat Triticum aestivum.


Assuntos
Microscopia de Fluorescência/métodos , Biologia Molecular/métodos , Intensificação de Imagem Radiográfica/métodos , Espectrometria por Raios X/métodos , Projetos de Pesquisa
17.
J Synchrotron Radiat ; 15(Pt 1): 106-8, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18097086

RESUMO

A new type of diffractive X-ray optical elements is reported, which have been used as beam-shaping condenser lenses in full-field transmission X-ray microscopes. These devices produce a square-shaped flat-top illumination on the sample matched to the field of view. The size of the illumination can easily be designed depending on the geometry and requirements of the specific experimental station. Gold and silicon beam-shapers have been fabricated and tested in full-field microscopes in the hard and soft X-ray regimes, respectively.

18.
Opt Lett ; 31(10): 1465-7, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16642140

RESUMO

We report on a novel condenser for full-field transmission x-ray microscopes that use synchrotron radiation from an undulator source. The condenser produces a Koehler-like homogeneous intensity distribution in the sample plane and eliminates object illumination problems connected with the high degree of spatial coherence in an undulator beam. The optic consists of a large number of small linear diffraction gratings and is therefore relatively easy to manufacture. First imaging experiments with a prototype condenser were successfully performed with the Twinmic x-ray microscope at the Elettra synchrotron facility in Italy.

19.
Opt Express ; 11(19): 2278-88, 2003 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19471336

RESUMO

In this paper we introduce phase diffractive optical elements (DOEs) that beside simple focusing, can perform new optical functions in the range of x-rays. In particular, the intensity of the wavefront can be distributed with almost complete freedom. We calculated and fabricated high resolution DOEs that can focus a monochromatic x-ray beam into multiple spots displaced in a single or two planes along the optical axis or can shape the beam into a desired continuous geometrical pattern. The possibility to introduce a specified phase shift between the generated spots, which can increase the image contrast, is demonstrated by preliminary results obtained from computer simulations and experiments performed in visible light. The functionality of the DOEs has been tested successfully in full-field differential interference contrast (DIC) x-ray microscopy at the ID21 beamline of the European Synchrotron Radiation Facility (ESRF) operated at 4 keV photon energy.

20.
J Opt Soc Am A Opt Image Sci Vis ; 19(4): 797-806, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11934173

RESUMO

X-ray imaging in differential interference contrast (DIC) with submicrometer optical resolution was performed by using a twin zone plate (TZP) setup generating focal spots closely spaced within the TZP spatial resolution of 160 nm. Optical path differences introduced by the sample are recorded by a CCD camera in a standard full-field imaging and by an aperture photodiode in a standard scanning transmission x-ray microscope. Applying this x-ray DIC technique, we demonstrate for both the full-field imaging and scanning x-ray microscope methods a drastic increase in image contrast (approximately 20x) for a low-absorbing specimen, similar to the Nomarski DIC method for visible-light microscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...