Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11909, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789721

RESUMO

T cells recirculate through tissues and lymphatic organs to scan for their cognate antigen. Radiation therapy provides site-specific cytotoxicity to kill cancer cells but also has the potential to eliminate the tumor-specific T cells in field. To dynamically study the effect of radiation on CD8 T cell recirculation, we used the Kaede mouse model to photoconvert tumor-infiltrating cells and monitor their movement out of the field of radiation. We demonstrate that radiation results in loss of CD8 T cell recirculation from the tumor to the lymph node and to distant sites. Using scRNASeq, we see decreased proliferating CD8 T cells in the tumor following radiation therapy resulting in a proportional enrichment in exhausted phenotypes. By contrast, 5 days following radiation increased recirculation of T cells from the tumor to the tumor draining lymph node corresponds with increased immunosurveillance of the treated tumor. These data demonstrate that tumor radiation therapy transiently impairs systemic T cell recirculation from the treatment site to the draining lymph node and distant untreated tumors. This may inform timing therapies to improve systemic T cell-mediated tumor immunity.


Assuntos
Linfócitos T CD8-Positivos , Animais , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfonodos/efeitos da radiação , Linfonodos/patologia , Linfonodos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/radioterapia , Neoplasias/imunologia , Neoplasias/patologia , Rastreamento de Células/métodos , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Fluorescência
2.
Methods Cell Biol ; 174: 55-63, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36710051

RESUMO

The response to radiation therapy incorporates both the direct impacts of radiation on cancer cells as well as the immune consequences that can help or hinder control of residual disease. Understanding the response of an individual patient's cancer to radiation, and the impact of radiation on the immune cell subsets present in the tumor prior to radiation therapy, can help identify potential predictors of outcome. Here, we describe a methodological approach to using an explant tumor model to characterize and study the immune cell subsets in murine tumors following exposure to ex vivo radiation treatment. The broader tumor environment incorporates distinct microenvironments consisting of tumor stroma and cancer cell nests, with limited interchange between these zones. Ex vivo analysis of tumor explants ensures that these environments remain intact and allows patient-specific response assessments with a broader range of treatment conditions to find optimal conditions and immunotherapy combinations. While this protocol describes the treatment of murine tumors, with minor variations the same protocol can be used to study and characterize various immune populations following radiation therapy in human tumors.


Assuntos
Neoplasias , Humanos , Animais , Camundongos , Neoplasias/radioterapia , Imunoterapia/métodos , Microambiente Tumoral
3.
Cells ; 9(2)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973059

RESUMO

Glioblastoma (GBM) is inevitably refractory to surgery and chemoradiation. The hope for immunotherapy has yet to be realised in the treatment of GBM. Immune checkpoint blockade antibodies, particularly those targeting the Programme death 1 (PD-1)/PD-1 ligand (PD-L1) pathway, have improved the prognosis in a range of cancers. However, its use in combination with chemoradiation or as monotherapy has proved unsuccessful in treating GBM. This review focuses on our current knowledge of barriers to immunotherapy success in treating GBM, such as diminished pre-existing anti-tumour immunity represented by low levels of PD-L1 expression, low tumour mutational burden and a severely exhausted T-cell tumour infiltrate. Likewise, systemic T-cell immunosuppression is seen driven by tumoural factors and corticosteroid use. Furthermore, unique anatomical differences with primary intracranial tumours such as the blood-brain barrier, the type of antigen-presenting cells and lymphatic drainage contribute to differences in treatment success compared to extracranial tumours. There are, however, shared characteristics with those known in other tumours such as the immunosuppressive tumour microenvironment. We conclude with a summary of ongoing and future immune combination strategies in GBM, which are representative of the next wave in immuno-oncology therapeutics.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Glioblastoma/imunologia , Glioblastoma/terapia , Imunoterapia , Humanos , Terapia de Alvo Molecular , Transdução de Sinais , Microambiente Tumoral/imunologia
4.
Oncoimmunology ; 8(7): 1593803, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31143512

RESUMO

Current treatments for glioblastoma (GBM) have limited efficacy and significant morbidity and therefore new strategies are urgently needed. Dendritic cells have the power to create anti-tumor immune responses. The greater potency of circulating dendritic cells (DC) over laboratory-generated monocyte-derived DC makes them exciting new immunotherapeutic candidates. To determine the immune status of GBM patients we initially investigated the frequency and function of circulating DC subsets. Furthermore, we tested the therapeutic potential of inhibiting the p38 mitogen-activated protein kinase pathway (p38i) in circulating DC to overcome DC dysfunction. GBM patients (n = 16) had significantly reduced numbers of the major myeloid circulating dendritic cell (cDC2) and plasmacytoid DC vs healthy controls; 1736 vs 4975 (p = 0.028) and 893 vs 2287 cells/mL (P = <0.001) respectively. This inversely correlated with dexamethasone (Dex) dose in a log-linear model, and disease status. Patients' cDC2 were immature with impaired interleukin (IL)-12 secretion, reduced IL-12:IL-10 ratio, and low HLA-DR and CD86 expression. Exposure of healthy donor cDC2 to Dex or GBM cell lysate resulted in a similar low IL-12:IL-10 ratio. Inhibition of p38 restored the IL-12:IL-10 balance in Dex or tumor lysate-conditioned healthy cDC2 and enhanced T-cell proliferation and interferon-gamma (IFNγ) production. Importantly, patient-derived cDC2 showed a similar reversal of DC dysfunction with p38i. This study demonstrates the therapeutic potential of developing the next generation of DC vaccines using enhanced p38i-conditioned cDC2. We will therefore shortly embark on a clinical trial of adoptively transferred, p38 MAPK-inhibited cDC2 in adults with GBM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...