Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38717363

RESUMO

Skeletal muscle microvascular blood flow (MBF) plays an important role in glucose disposal in muscle. Impairments in muscle MBF contribute to insulin resistance and pre-diabetes. Animal studies show that short-term (3 day) high-fat feeding blunts skeletal muscle MBF prior to impairing insulin-stimulated glucose disposal. It is not known if this occurs in humans. We investigated the temporal impact of a 7-day high-calorie high-fat (HCHF) diet intervention (+52% kJ; 41% fat) on fasting and postprandial cardiometabolic outcomes in 14 healthy adults (18-37 years). Metabolic health and vascular responses to a mixed meal challenge (MMC) were measured at pre- (day 0), mid- (day 4) and post-intervention (day 8). There were no significant differences in body weight, body fat %, fasting blood glucose, and fasting plasma insulin concentrations at pre-, mid- and post-intervention. Compared to pre-intervention there was a significant increase in insulin (but not glucose) total area under the curve, in response to the MMC at mid-intervention (p=0.041) and at post-intervention (p=0.028). Unlike at pre- and mid-intervention, at post-intervention muscle MBF decreased at 60 min (p=0.024) and 120 min (p=0.023) following the MMC. However, macrovascular blood flow was significantly increased from 0 to 60 mins (p<0.001) and 120 mins (p<0.001) following the MMC at pre-, mid- and post-intervention. Therefore, short-term HCHF feeding in healthy individuals leads to elevated postprandial insulin but not glucose levels and a blunting of meal-induced skeletal muscle MBF responses but not macrovascular blood flow responses.

2.
Front Nutr ; 10: 1071855, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324743

RESUMO

The effect of dietary fat on type 2 diabetes (T2D) risk is unclear. A posteriori dietary pattern methods have been increasingly used to investigate how dietary fats impact T2D risk. However, the diverse nutrients, foods and dietary patterns reported in these studies requires examination to better understand the role of dietary fats. This scoping review aimed to systematically search and synthesize the literature regarding the association between dietary patterns characterized by dietary fats and T2D risk using reduced rank regression. Medline and Embase were searched for cross-sectional, cohort or case-control studies published in English. Of the included studies (n = 8), five high-fat dietary patterns, mostly high in SFA, were associated with higher T2D risk or fasting glucose, insulin and Homeostasis Model Assessment (HOMA) levels. These were mostly low-fiber (n = 5) and high energy-density (n = 3) dietary patterns characterized by low fruit and vegetables intake, reduced fat dairy products and higher processed meats and butter intake. Findings from this review suggest that a posteriori dietary patterns high in SFA that increase T2D risk are often accompanied by lower fruits, vegetables and other fiber-rich foods intake. Therefore, healthy dietary fats consumption for T2D prevention should be encouraged as part of a healthful dietary pattern.

3.
Nutr Metab Cardiovasc Dis ; 33(4): 797-808, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36890071

RESUMO

BACKGROUND AND AIMS: Individual dietary fats can differentially impact on cardiometabolic health. However, their impact within a dietary pattern is not well understood, and warrants comparison with diet quality scores with a dietary fat focus. The aim of this study was to investigate cross-sectional associations between a posteriori dietary patterns characterized by fat type and cardiometabolic health markers, and compare these with two diet quality scores. METHODS AND RESULTS: UK Biobank adults with ≥two 24-h dietary assessments and data on cardiometabolic health were included (n = 24 553; mean age: 55.9 y). A posteriori dietary patterns (DP1; DP2) were generated through reduced rank regression (response variables: SFA, MUFA, PUFA). Mediterranean Diet Score (MDS) and Dietary Approaches to Stop Hypertension (DASH) dietary patterns were created. Multiple linear regression analyses were used to investigate associations between standardized dietary patterns and cardiometabolic health (total cholesterol, HDL-C, LDL-C and VLDL-C cholesterol, triglycerides, C-reactive protein [CRP], glycated hemoglobin [HbA1c]). DP1, positively correlated with SFAs, MUFAs and PUFAs, characterized by higher nuts, seeds and vegetables intake and lower fruits and low-fat yoghurt intake, was associated with lower HDL-C (ß: -0.07; 95% CI: -0.10, -0.03) and triglycerides (-0.17; -0.23, -0.10) and higher LDL-C (0.07; 0.01,0.12), CRP (0.01; 0.01, 0.03) and HbA1c (0.16; 0.11,0.21). DP2, positively correlated with SFAs, negatively correlated with PUFAs, characterized by higher butter and high-fat cheese intake and lower nuts, seeds and vegetable intake, was associated with higher total cholesterol (0.10; 0.01, 0.21), VLDL-C (0.05; 0.02, 0.07), triglycerides (0.07; 0.01, 0.13), CRP (0.03; 0.02, 0,04) and HbA1c (0.06; 0.01, 0.11). Higher adherence to MDS and DASH was associated with favorable cardiometabolic health markers concentration. CONCLUSIONS: Irrespective of the method used, dietary patterns that encourage healthy fat consumption were associated with favorable cardiometabolic health biomarkers. This study strengthens the evidence for incorporation of dietary fat type into policy and practice guidelines for CVD prevention.


Assuntos
Doenças Cardiovasculares , Dieta Mediterrânea , Adulto , Humanos , Pessoa de Meia-Idade , Hemoglobinas Glicadas , LDL-Colesterol , Estudos Transversais , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Gorduras na Dieta/efeitos adversos , Triglicerídeos , Ácidos Graxos Insaturados , Proteína C-Reativa/metabolismo , Fatores de Risco
4.
Nutr Diabetes ; 12(1): 31, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676248

RESUMO

There is increasing evidence that skeletal muscle microvascular (capillary) blood flow plays an important role in glucose metabolism by increasing the delivery of glucose and insulin to the myocytes. This process is impaired in insulin-resistant individuals. Studies suggest that in diet-induced insulin-resistant rodents, insulin-mediated skeletal muscle microvascular blood flow is impaired post-short-term high fat feeding, and this occurs before the development of myocyte or whole-body insulin resistance. These data suggest that impaired skeletal muscle microvascular blood flow is an early vascular step before the onset of insulin resistance. However, evidence of this is still lacking in humans. In this review, we summarise what is known about short-term high-calorie and/or high-fat feeding in humans. We also explore selected animal studies to identify potential mechanisms. We discuss future directions aimed at better understanding the 'early' vascular mechanisms that lead to insulin resistance as this will provide the opportunity for much earlier screening and timing of intervention to assist in preventing type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Dieta , Insulina/metabolismo , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo
5.
Am J Physiol Endocrinol Metab ; 323(5): E418-E427, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35723226

RESUMO

Adipose tissue microvascular blood flow (MBF) is stimulated postprandially to augment delivery of nutrients and hormones to adipocytes. Adipose tissue MBF is impaired in type 2 diabetes (T2D). Whether healthy individuals at-risk of T2D show similar impairments is unknown. We aimed to determine whether adipose tissue MBF is impaired in apparently healthy individuals with a family history of T2D. Overnight-fasted individuals with no family history of T2D for two generations (FH-, n = 13), with at least one parent with T2D (FH+, n = 14) and clinically diagnosed T2D (n = 11) underwent a mixed meal challenge (MMC). Metabolic responses [blood glucose, plasma insulin, plasma nonesterified fatty acids (NEFAs), and fat oxidation] were measured before and during the MMC. MBF in truncal subcutaneous adipose tissue was assessed by contrast ultrasound while fasting and 60 min post-MMC. FH+ had normal blood glucoses, increased adiposity, and impaired post-MMC adipose tissue MBF (Δ0.70 ± 0.22 vs. 2.45 ± 0.60 acoustic intensity/s, P = 0.007) and post-MMC adipose tissue insulin resistance (Adipo-IR index; Δ45.5 ± 13.9 vs. 7.8 ± 5.1 mmol/L × pmol/L, P = 0.007) compared with FH-. FH+ and T2D had an impaired ability to suppress fat oxidation post-MMC. Fat oxidation incremental area under the curve (iAUC) (35-55 min post-MMC, iAUC) was higher in FH+ and T2D than in FH- (P = 0.005 and 0.009, respectively). Postprandial MBF was negatively associated with postprandial fat oxidation iAUC (P = 0.01). We conclude that apparently healthy FH+ individuals display blunted postprandial adipose tissue MBF that occurs in parallel with adipose tissue insulin resistance and impaired suppression of fat oxidation, which may help explain their heightened risk for developing T2D.NEW & NOTEWORTHY Adipose tissue blood flow plays a key role in postprandial nutrient storage. People at-risk of type 2 diabetes have impaired postmeal adipose tissue blood flow. Impaired adipose tissue blood flow is associated with altered fat oxidation. Risk of type 2 diabetes may be elevated by poor adipose tissue blood flow.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Insulinas , Adulto , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Glicemia/metabolismo , Resistência à Insulina/fisiologia , Microcirculação , Ácidos Graxos não Esterificados/metabolismo , Período Pós-Prandial/fisiologia , Tecido Adiposo/metabolismo , Nutrientes , Hormônios/metabolismo , Insulinas/metabolismo , Insulina/metabolismo
6.
J Am Heart Assoc ; 11(11): e024069, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35621194

RESUMO

Background Although the impact of dietary fats on cardiovascular disease (CVD) risk is widely researched, longitudinal associations between dietary patterns (DPs) based on fat type and early markers of CVD risk remain unclear. Methods and Results UK Biobank participants (46.9% men, mean age 55 years) with data on early markers of CVD risk (n=12 706) were followed longitudinally (2014-2020; mean 8.4 years). Two DPs (DP1, DP2) were derived using reduced rank regression (response variables: monounsaturated fat, polyunsaturated fat, and saturated fat based on two 24-hour dietary assessments. Multivariable logistic and linear regression were used to investigate associations between DPs and odds of elevated CVD risk (using the nonlaboratory Framingham Risk Score) and changes in early CVD markers, respectively. DP1 (characterized by higher nuts and seeds and lower fruit and legumes intake) was positively correlated with saturated fat, monounsaturated fat, and polyunsaturated fat; DP2 (characterized by higher butter and high-fat cheese, lower nuts and seeds intake) was positively correlated with saturated fat and negatively with polyunsaturated fat and monounsaturated fat. DP2 was associated with slightly higher odds of elevated CVD risk (odds ratio, 1.04 [95% CI, 1.00-1.07]). DP1 was associated with higher diastolic blood pressure (ß, 0.20 [95% CI, 0.01-0.37]) and lower cardiac index (ß, -0.02 [95% CI, -0.04 to -0.01]); DP2 was associated with higher carotid intima medial thickness (ß, 1.80 [95% CI, 0.01-3.59]) and lower left ventricular ejection fraction (ß, -0.15 [95% CI, -0.24 to -0.07]) and cardiac index (ß, -0.01 [95% CI, -0.02 to -0.01]). Conclusions This study suggests small but statistically significant associations between DPs based on fat type and some early markers of CVD risk. Further research is needed to confirm these associations.


Assuntos
Doenças Cardiovasculares , Bancos de Espécimes Biológicos , Biomarcadores , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Gorduras na Dieta , Ácidos Graxos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Volume Sistólico , Reino Unido/epidemiologia , Função Ventricular Esquerda
7.
J Nutr ; 151(11): 3570-3578, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34522964

RESUMO

BACKGROUND: The fat type consumed is considered a risk factor for developing obesity and type 2 diabetes (T2D). However, these associations have not been investigated using a dietary patterns approach, which can capture combinations of foods and fat type consumed. OBJECTIVES: This study aimed to investigate associations between dietary patterns with varying proportions of SFAs, MUFAs, or PUFAs and obesity, abdominal obesity, and self-reported T2D incidence. METHODS: This study included UK Biobank participants with 2 or more 24-h dietary assessments, free from the outcome of interest at recruitment, and with outcome data at follow-up (n = 16,523; mean follow-up: 6.3 y). Reduced rank regression was used to derive dietary patterns with SFAs, MUFAs, and PUFAs (% of energy intake) as response variables. Logistic regression, adjusted for sociodemographic and health characteristics, was used to investigate the associations between dietary patterns and obesity [BMI (kg/m2) ≥30], abdominal obesity (waist circumference; men: ≥102 cm; women: ≥88 cm) and T2D incidence. RESULTS: Two dietary patterns, DP1 and DP2, were identified: DP1 positively correlated with SFAs (r = 0.48), MUFAs (r = 0.67), and PUFAs (r = 0.56), characterized by higher intake of nuts, seeds, and butter and lower intake of fruit and low-fat yogurt; DP2 positively correlated with SFAs (r = 0.76) and negatively with PUFAs (r = -0.64) and MUFAs (r = -0.01), characterized by higher intake of butter and high-fat cheese and lower intake of nuts and seeds. Only DP2 was associated with higher obesity and abdominal obesity incidence (OR: 1.24; 95% CI: 1.02, 1.45; and OR: 1.19; 95% CI: 1.02, 1.38, respectively). Neither of the dietary patterns was associated with T2D incidence. CONCLUSIONS: These findings provide evidence that a dietary pattern characterized by higher SFA and lower PUFA foods is associated with obesity and abdominal obesity incidence, but not T2D.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Bancos de Espécimes Biológicos , Diabetes Mellitus Tipo 2/epidemiologia , Gorduras na Dieta , Ácidos Graxos , Feminino , Humanos , Estudos Longitudinais , Masculino , Obesidade/epidemiologia , Reino Unido/epidemiologia
8.
Nutrients ; 13(4)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805534

RESUMO

The world's ever-growing population presents a major challenge in providing sustainable food options and in reducing pressures on the Earth's agricultural land and freshwater resources. Current estimates suggest that agriculture contributes ~30% of global greenhouse gas (GHG) emissions. Additionally, there is an increased demand for animal protein, the production of which is particularly polluting. Therefore, the climate-disrupting potential of feeding the planet is likely to substantially worsen in the future. Due to the nutritional value of animal-based protein, it is not a simple solution to recommend a wholesale reduction in production/consumption of animal proteins. Rather, employing strategies which result in the production of low carbon animal protein may be part of the solution to reduce the GHGs associated with our diets without compromising diet quality. We suggest that farmed mussels may present a partial solution to this dilemma. Mussel production has a relatively low GHG production and does not put undue pressure on land or fresh water supplies. By drawing comparisons to other protein sources using the Australian Food and Nutrient Database and other published data, we demonstrate that they are a sustainable source of high-quality protein, long-chain omega-3 fatty acids, phytosterols, and other key micronutrients such as B-12 and iron. The aim of this review is to summarise the current knowledge on the health benefits and potential risks of increasing the consumption of farmed mussels.


Assuntos
Aquicultura , Bivalves/química , Proteínas Alimentares , Meio Ambiente , Ácidos Graxos Ômega-3/química , Animais , Humanos , Valor Nutritivo
9.
Med Sci Sports Exerc ; 53(2): 375-383, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32826637

RESUMO

PURPOSE: Whole-body vibration (WBV) therapy has been reported to potentially act as an exercise mimetic by improving muscle function and exercise capacity in a variety of healthy and clinical populations. Considering the important role that microvascular blood flow plays in muscle metabolism and exercise capacity, we investigated the muscle microvascular responses of acute WBV to knee extension exercise (KEX) in healthy individuals. METHODS: Eleven healthy adults (age: 33 ± 2 yr; body mass index: 23.6 ± 1.1 kg·m-2) underwent 3 min of WBV, or 3 min of KEX at 25% of one-repetition maximum, in a randomized order separated by a minimum of 72 h. Femoral arterial blood flow was measured via Doppler ultrasound, and thigh muscle microvascular blood flow was measured via contrast-enhanced ultrasound at baseline and throughout the 3-min postintervention recovery period. RESULTS: Both WBV and KEX significantly increased peak microvascular blood flow (WBV, 5.6-fold; KEX, 21-fold; both P < 0.05) during the 3-min recovery period. Despite a similar increase in femoral arterial blood flow (~4-fold; both P < 0.05 vs baseline) and whole-body oxygen consumption measured by indirect calorimetry (WBV, 48%; KEX, 60%; both P < 0.05 vs baseline) in both conditions, microvascular blood flow was stimulated to a greater extent after KEX. CONCLUSION: A single 3-min session of WBV in healthy individuals is sufficient to significantly enhance muscle microvascular blood flow. Despite KEX providing a more potent stimulus, WBV may be an effective method for improving microvascular blood flow in populations reported to exhibit microvascular dysfunction such as patients with type 2 diabetes.


Assuntos
Exercício Físico/fisiologia , Microcirculação , Músculo Esquelético/irrigação sanguínea , Vibração , Adulto , Pressão Sanguínea , Estudos Cross-Over , Metabolismo Energético , Feminino , Artéria Femoral/fisiologia , Frequência Cardíaca , Humanos , Joelho/fisiologia , Masculino , Músculo Esquelético/diagnóstico por imagem , Consumo de Oxigênio , Fluxo Sanguíneo Regional , Coxa da Perna/irrigação sanguínea , Ultrassonografia Doppler
10.
J Physiol ; 599(1): 83-102, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33191527

RESUMO

KEY POINTS: Exercise, insulin-infusion and low-glucose mixed-nutrient meal ingestion increases muscle microvascular blood flow which in part facilitates glucose delivery and disposal. In contrast, high-glucose ingestion impairs muscle microvascular blood flow which may contribute to impaired postprandial metabolism. We investigated the effects of prior cycling exercise on postprandial muscle microvascular blood flow responses to a high-glucose mixed-nutrient meal ingested 3 and 24 h post-exercise. Prior exercise enhanced muscle microvascular blood flow and mitigated microvascular impairments induced by a high-glucose mixed meal ingested 3 h post-exercise, and to a lesser extent 24 h post-exercise. High-glucose ingestion 3 h post-exercise leads to greater postprandial blood glucose, non-esterified fatty acids, and fat oxidation, and a delay in the insulin response to the meal compared to control. Effects of acute exercise on muscle microvascular blood flow persist well after the cessation of exercise which may be beneficial for conditions characterized by microvascular and glycaemic dysfunction. ABSTRACT: Exercise, insulin-infusion and low-glucose mixed-nutrient meal ingestion lead to increased muscle microvascular blood flow (MBF), whereas high-glucose ingestion impairs MBF. We investigated whether prior cycling exercise could enhance postprandial muscle MBF and prevent MBF impairments induced by high-glucose mixed-nutrient meal ingestion. In a randomized cross-over design, eight healthy young men ingested a high-glucose mixed-nutrient meal (1.1 g glucose/kg body weight; 45% carbohydrate, 20% protein and 35% fat) after an overnight fast (no-exercise control) and 3 h and 24 h after moderate-intensity cycling exercise (1 h at 70-75% V̇O2peak ). Skeletal muscle MBF, measured directly by contrast-enhanced ultrasound, was lower at 60 min and 120 min postprandially compared to baseline in all conditions (P < 0.05), with a greater decrease occurring from 60 min to 120 min in the control (no-exercise) condition only (P < 0.001). Despite this meal-induced decrease, MBF was still markedly higher compared to control in the 3 h post-exercise condition at 0 min (pre-meal; 74%, P = 0.004), 60 min (112%, P = 0.002) and 120 min (223%, P < 0.001), and in the 24 h post-exercise condition at 120 min postprandially (132%, P < 0.001). We also report that in the 3 h post-exercise condition postprandial blood glucose, non-esterified fatty acids (NEFAs), and fat oxidation were substantially elevated, and the insulin response to the meal delayed compared to control. This probably reflects a combination of increased post-exercise exogenous glucose appearance, substrate competition, and NEFA-induced insulin resistance. We conclude that prior cycling exercise elicits long-lasting effects on muscle MBF and partially mitigates MBF impairments induced by high-glucose mixed-nutrient meal ingestion.


Assuntos
Glicemia , Microcirculação , Músculo Esquelético , Glicemia/metabolismo , Glucose , Humanos , Insulina/metabolismo , Masculino , Período Pós-Prandial
11.
Am J Physiol Endocrinol Metab ; 318(6): E1014-E1021, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32286881

RESUMO

Oral glucose ingestion leads to impaired muscle microvascular blood flow (MBF), which may contribute to acute hyperglycemia-induced insulin resistance. We investigated whether incorporating lipids and protein into a high-glucose load would prevent postprandial MBF dysfunction. Ten healthy young men (age, 27 yr [24, 30], mean with lower and upper bounds of the 95% confidence interval; height, 180 cm [174, 185]; weight, 77 kg [70, 84]) ingested a high-glucose (1.1 g/kg glucose) mixed-nutrient meal (10 kcal/kg; 45% carbohydrate, 20% protein, and 35% fat) in the morning after an overnight fast. Femoral arterial blood flow was measured via Doppler ultrasound, and thigh MBF was measured via contrast-enhanced ultrasound, before meal ingestion and 1 h and 2 h postprandially. Blood glucose and plasma insulin were measured at baseline and every 15 min throughout the 2-h postprandial period. Compared with baseline, thigh muscle microvascular blood volume, velocity, and flow were significantly impaired at 60 min postprandial (-25%, -27%, and -46%, respectively; all P < 0.05) and to a greater extent at 120 min postprandial (-37%, -46%, and -64%; all P < 0.01). Heart rate and femoral arterial diameter, blood velocity, and blood flow were significantly increased at 60 min and 120 min postprandial (all P < 0.05). Higher blood glucose area under the curve was correlated with greater MBF dysfunction (R2 = 0.742; P < 0.001). Ingestion of a high-glucose mixed-nutrient meal impairs MBF in healthy individuals for up to 2 h postprandial.


Assuntos
Glicemia/metabolismo , Artéria Femoral/fisiopatologia , Glucose/administração & dosagem , Hiperglicemia/fisiopatologia , Insulina/metabolismo , Microcirculação/fisiologia , Músculo Esquelético/irrigação sanguínea , Fluxo Sanguíneo Regional/fisiologia , Adulto , Velocidade do Fluxo Sanguíneo/fisiologia , Artéria Femoral/diagnóstico por imagem , Voluntários Saudáveis , Frequência Cardíaca/fisiologia , Humanos , Hiperglicemia/diagnóstico por imagem , Masculino , Refeições , Músculo Esquelético/diagnóstico por imagem , Período Pós-Prandial , Coxa da Perna , Ultrassonografia , Adulto Jovem
12.
Clin Exp Pharmacol Physiol ; 47(4): 725-737, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31868941

RESUMO

Skeletal muscle contributes to ~40% of total body mass and has numerous important mechanical and metabolic roles in the body. Skeletal muscle is a major site for glucose disposal following a meal. Consequently, skeletal muscle plays an important role in postprandial blood glucose homeostasis. Over the past number of decades, research has demonstrated that insulin has an important role in vasodilating the vasculature in skeletal muscle in response to an insulin infusion (hyperinsulinaemic-euglycaemic clamp) or following the ingestion of a meal. This vascular action of insulin is pivotal for glucose disposal in skeletal muscle, as insulin-stimulated vasodilation increases the delivery of both glucose and insulin to the myocyte. Notably, in insulin-resistant states such as obesity and type 2 diabetes, this vascular response of insulin in skeletal muscle is significantly impaired. Whereas the majority of work in this field has focussed on the action of insulin alone on skeletal muscle microvascular blood flow and myocyte glucose metabolism, there is less understanding of how the consumption of a meal may affect skeletal muscle blood flow. This is in part due to complex variations in glucose and insulin dynamics that occurs postprandially-with changes in humoral concentrations of glucose, insulin, amino acids, gut and pancreatic peptides-compared to the hyperinsulinaemic-euglycaemic clamp. This review will address the emerging body of evidence to suggest that postprandial blood flow responses in skeletal muscle may be a function of the nutritional composition of a meal.


Assuntos
Técnica Clamp de Glucose , Hiperinsulinismo/fisiopatologia , Microcirculação , Músculo Esquelético/fisiopatologia , Período Pós-Prandial , Animais , Humanos , Hiperinsulinismo/sangue
13.
Diabetologia ; 62(12): 2310-2324, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31489455

RESUMO

AIMS/HYPOTHESIS: This study aimed to examine the metabolic health of young apparently healthy non-obese adults to better understand mechanisms of hyperinsulinaemia. METHODS: Non-obese (BMI < 30 kg/m2) adults aged 18-35 years (N = 254) underwent a stable isotope-labelled OGTT. Insulin sensitivity, glucose effectiveness and beta cell function were determined using oral minimal models. Individuals were stratified into quartiles based on their insulin response during the OGTT, with quartile 1 having the lowest and quartile 4 the highest responses. RESULTS: Thirteen per cent of individuals had impaired fasting glucose (IFG; n = 14) or impaired glucose tolerance (IGT; n = 19), allowing comparisons across the continuum of insulin responses within the spectrum of normoglycaemia and prediabetes. BMI (~24 kg/m2) was similar across insulin quartiles and in those with IFG and IGT. Despite similar glycaemic excursions, fasting insulin, triacylglycerols and cholesterol were elevated in quartile 4. Insulin sensitivity was lowest in quartile 4, and accompanied by increased insulin secretion and reduced insulin clearance. Individuals with IFG had similar insulin sensitivity and beta cell function to those in quartiles 2 and 3, but were more insulin sensitive than individuals in quartile 4. While individuals with IGT had a similar degree of insulin resistance to quartile 4, they exhibited a more severe defect in beta cell function. Plasma branched-chain amino acids were not elevated in quartile 4, IFG or IGT. CONCLUSIONS/INTERPRETATION: Hyperinsulinaemia within normoglycaemic young, non-obese adults manifests due to increased insulin secretion and reduced insulin clearance. Individual phenotypic characterisation revealed that the most hyperinsulinaemic were more similar to individuals with IGT than IFG, suggesting that hyperinsulinaemic individuals may be on the continuum toward IGT. Furthermore, plasma branched-chain amino acids may not be an effective biomarker in identifying hyperinsulinaemia and insulin resistance in young non-obese adults.


Assuntos
Aminoácidos/sangue , Hiperinsulinismo/metabolismo , Secreção de Insulina/fisiologia , Insulina/sangue , Adolescente , Adulto , Glicemia/metabolismo , Jejum/sangue , Feminino , Teste de Tolerância a Glucose , Humanos , Hiperinsulinismo/sangue , Resistência à Insulina/fisiologia , Lipídeos/sangue , Masculino , Adulto Jovem
14.
Mol Metab ; 27: 33-46, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31285171

RESUMO

OBJECTIVE: Phosphatidylethanolamine (PtdEtn) is a major phospholipid in mammals. It is synthesized via two pathways, the CDP-ethanolamine pathway in the endoplasmic reticulum and the phosphatidylserine (PtdSer) decarboxylase (PSD) pathway in the mitochondria. While the CDP-ethanolamine pathway is considered the major route for PtdEtn synthesis in most mammalian tissues, little is known about the importance of the PSD pathway in vivo, especially in tissues enriched with mitochondria such as skeletal muscle. Therefore, we aimed to examine the role of the mitochondrial PSD pathway in regulating PtdEtn homeostasis in skeletal muscle in vivo. METHODS: To determine the functional significance of this pathway in skeletal muscle in vivo, an adeno-associated viral vector approach was employed to knockdown PSD expression in skeletal muscle of adult mice. Muscle lipid and metabolite profiling was performed using mass spectrometry. RESULTS: PSD knockdown disrupted muscle phospholipid homeostasis leading to an ∼25% reduction in PtdEtn and an ∼45% increase in PtdSer content. This was accompanied by the development of a severe myopathy, evident by a 40% loss in muscle mass as well as extensive myofiber damage as shown by increased DNA synthesis and central nucleation. In addition, PSD knockdown caused marked accumulation of abnormally appearing mitochondria that exhibited severely disrupted inner membrane integrity and reduced OXPHOS protein content. CONCLUSIONS: The PSD pathway has a significant role in maintaining phospholipid homeostasis in adult skeletal muscle. Moreover, PSD is essential for maintenance of mitochondrial integrity and skeletal muscle mass.


Assuntos
Carboxiliases/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Animais , Carboxiliases/genética , Feminino , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Mitocôndrias/patologia , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Fosfatidilserinas/metabolismo , Fosfolipídeos/metabolismo
15.
Nutrients ; 11(6)2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31248159

RESUMO

Numerous United Kingdom and European Union expert panels recommend that the general adult population consumes ~250 mg of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) per day through the consumption of one portion of oily fish per week. The long-chain omega-3 fatty acids EPA and DHA are only found in appreciable amounts in marine organisms. Increasing oily fish consumption conflicts with sustaining fisheries, so alternative dietary sources of EPA and DHA must be explored. Mussels are high in omega-3 polyunsaturated fatty acids (PUFAs) and a good source of essential amino acids. Therefore, we aimed to investigate the impact of introducing mussels as a protein source in the lunchtime meal three times per week for two weeks on the omega-3 status of free-living participants. Following an initial two-week monitoring period, 12 participants (eight male and four female) attended the nutrition laboratory three times per week for two weeks. Each participant received a personalised lunch constituting one-third of their typical daily calorie consumption with ~20% of the calories supplied as cooked mussels. A portion of cooked mussels from each feeding occasion was tested for total omega-3 content. The mean ± SD mussel EPA + DHA content was 518.9 ± 155.7 mg/100 g cooked weight, meaning that each participant received on average 709.2 ± 252.6 mg of EPA + DHA per meal or 304.0 ± 108.2 mg of EPA + DHA per day. Blood spot analysis revealed a significant increase in the omega-3 index (week 1 = 4.27 ± 0.81; week 4 = 5.07 ± 1.00) and whole blood EPA content during the study (%EPA week 1 = 0.70 ± 0.0.35; %EPA week 4 = 0.98 ± 0.35). Consuming mussels three times per week for two weeks as the protein source in a personalised lunchtime meal is sufficient to moderately improve the omega-3 index and whole blood DHA + EPA content in young healthy adults.


Assuntos
Bivalves , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Almoço , Estado Nutricional , Valor Nutritivo , Alimentos Marinhos , Adulto , Animais , Culinária , Ácidos Docosa-Hexaenoicos/sangue , Ácido Eicosapentaenoico/sangue , Feminino , Humanos , Masculino , Tamanho da Porção , Recomendações Nutricionais , Escócia , Fatores de Tempo , Adulto Jovem
16.
Nutrients ; 10(6)2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899246

RESUMO

The role of n-3 long chain polyunsaturated fatty acids (LC n-3 PUFA) in reducing the risk of type 2 diabetes (T2DM) is not well established. The synthesis of LC n-3 PUFA requires fatty acid desaturase enzymes, which are encoded by the FADS gene. It is unclear if FADS polymorphism and dietary fatty acid intake can influence plasma or erythrocyte membrane fatty acid profile and thereby the risk of T2DM. Thus, the aim of this systematic review was to assess the current evidence for an effect of FADS polymorphism on T2DM risk and understand its associations with serum/erythrocyte and dietary LC n-3 PUFA. A systematic search was performed using PubMed, Embase, Cochrane and Scopus databases. A total of five studies met the inclusion criteria and were included in the present review. This review identified that FADS polymorphism may alter plasma fatty acid composition and play a protective role in the development of T2DM. Serum and erythrocyte LC n-3 PUFA levels were not associated with risk of T2DM, while dietary intake of LC n-3 PUFA was associated with lower risk of T2DM in one study only. The effect of LC n-3 PUFA consumption on associations between FADS polymorphism and T2DM warrants further investigation.


Assuntos
Diabetes Mellitus Tipo 2/genética , Eritrócitos/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Ômega-3/sangue , Polimorfismo Genético , Adolescente , Adulto , Idoso , Dessaturase de Ácido Graxo Delta-5 , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/prevenção & controle , Ácidos Graxos Dessaturases/metabolismo , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Fatores de Proteção , Fatores de Risco , Adulto Jovem
17.
Artigo em Inglês | MEDLINE | ID: mdl-29113747

RESUMO

The aim of the present study was to assess and compare the effects of eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) supplementation on lipid metabolism in 4 month-old male C57BL/6J mice fed a high-fat diet. The high-fat fed mice showed evidence of fatty liver, obesity and insulin resistance after being on the high-fat diet for 6 weeks compared with the control low-fat diet fed mice. Supplementation of the high-fat diet with either EPA, DPA or DHA prevented the fatty liver, prevented high serum cholesterol and serum glucose and prevented high liver cholesterol levels. DPA (but not EPA or DHA) was associated with a significantly improved homeostasis model assessment of insulin resistance (HOMA-IR) compared with the high-fat fed mice. Supplementation with DPA and DHA both prevented the decreased serum adiponectin levels, compared with EPA and the high-fat diet. In addition, supplementation with DPA and DHA both prevented the increased serum alanine aminotransferase (ALT) levels compared with EPA and the high-fat group, which can be attributed to down-regulation of TLR-4/NF-κB signaling pathway and decreasing lipogenesis in the liver. Therefore, DPA and DHA seem to exert similar effects in cardio-metabolic protection against the high-fat diet and these effects seem to be different to those of EPA.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Ômega-3/administração & dosagem , Fígado Gorduroso/prevenção & controle , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade/prevenção & controle , Animais , Glicemia/efeitos dos fármacos , Colesterol/sangue , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácido Eicosapentaenoico/administração & dosagem , Ácido Eicosapentaenoico/uso terapêutico , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Insaturados/administração & dosagem , Ácidos Graxos Insaturados/uso terapêutico , Fígado Gorduroso/induzido quimicamente , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/induzido quimicamente
18.
FASEB J ; 30(11): 3714-3725, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27461565

RESUMO

In contrast to the well-characterized effects of specialized proresolving lipid mediators (SPMs) derived from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), little is known about the metabolic fate of the intermediary long-chain (LC) n-3 polyunsaturated fatty acid (PUFA) docosapentaenoic acid (DPA). In this double blind crossover study, shifts in circulating levels of n-3 and n-6 PUFA-derived bioactive lipid mediators were quantified by an unbiased liquid chromatography-tandem mass spectrometry lipidomic approach. Plasma was obtained from human subjects before and after 7 d of supplementation with pure n-3 DPA, n-3 EPA or placebo (olive oil). DPA supplementation increased the SPM resolvin D5n-3DPA (RvD5n-3DPA) and maresin (MaR)-1, the DHA vicinal diol 19,20-dihydroxy-DPA and n-6 PUFA derived 15-keto-PG E2 (15-keto-PGE2). EPA supplementation had no effect on any plasma DPA or DHA derived mediators, but markedly elevated monohydroxy-eicosapentaenoic acids (HEPEs), including the e-series resolvin (RvE) precursor 18-HEPE; effects not observed with DPA supplementation. These data show that dietary n-3 DPA and EPA have highly divergent effects on human lipid mediator profile, with no overlap in PUFA metabolites formed. The recently uncovered biologic activity of n-3 DPA docosanoids and their marked modulation by dietary DPA intake reveals a unique and specific role of n-3 DPA in human physiology.-Markworth, J. F., Kaur, G., Miller, E. G., Larsen, A. E., Sinclair, A. J., Maddipati, K. R., Cameron-Smith, D. Divergent shifts in lipid mediator profile following supplementation with n-3 docosapentaenoic acid and eicosapentaenoic acid.


Assuntos
Suplementos Nutricionais , Ácido Eicosapentaenoico/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados/metabolismo , Metabolismo dos Lipídeos , Adulto , Estudos Cross-Over , Dieta , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/administração & dosagem , Feminino , Humanos , Metabolismo dos Lipídeos/fisiologia , Adulto Jovem
19.
Curr Opin Clin Nutr Metab Care ; 19(2): 88-91, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26808265

RESUMO

PURPOSE OF REVIEW: Docosapentaenoic acid (DPA) is a long-chain n-3 polyunsaturated fatty acid that is intermediary between eicosapentaenoic acid and docosahexaenoic acid in the n-3 synthesis pathway. DPA is part of our normal diet through fish and lean red meat. In recent years, DPA has received increasing attention as an important bioactive fatty acid in light of its potential beneficial health effects, which include anti-inflammatory actions, antiplatelet aggregation, and improved plasma lipid prolife. This review provides a short summary of the most recent research on DPA. RECENT FINDINGS: In this review, we report on the latest association data as well as data generated from in-vitro and in-vivo studies on DPA and cardiovascular health, mental health, inflammation, and cancer. We also report on the newly identified DPA metabolites and their effects on exacerbation of inflammation in animal models. SUMMARY: Although there is a growing body of evidence supporting DPA's role as an important bioactive fatty acid, there is a need for more 'cause and effect studies', clinical trials and studies which can reveal whether DPA plays separate roles to those identified for eicosapentaenoic acid and docosahexaenoic acid.


Assuntos
Ácidos Graxos Insaturados/fisiologia , Animais , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/sangue , Ácidos Docosa-Hexaenoicos/fisiologia , Ácido Eicosapentaenoico/sangue , Ácido Eicosapentaenoico/fisiologia , Ácidos Graxos Insaturados/sangue , Humanos , Inflamação , Metabolismo dos Lipídeos , Saúde Mental , Neoplasias
20.
Nutrients ; 7(7): 5628-45, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26184297

RESUMO

The recommendations on the intake of long chain omega-3 polyunsaturated fatty acids (n-3 LC-PUFA) vary from eating oily fish ("once to twice per week") to consuming specified daily amounts of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) ("250-500 mg per day"). It is not known if there is a difference in the uptake/bioavailability between regular daily consumption of supplementsvs. consuming fish once or twice per week. In this study, the bioavailability of a daily dose of n-3 LC-PUFA (Constant treatment), representing supplements, vs. a large weekly dose of n-3 LC-PUFA (Spike treatment), representing consuming once or twice per week, was assessed. Six-week old healthy male Sprague-Dawley rats were fed either a Constant treatment, a Spike treatment or Control treatment (no n-3 LC-PUFA), for six weeks. The whole body, tissues and faeces were analysed for fatty acid content. The results showed that the major metabolic fate of the n-3 LC-PUFA (EPA+docosapentaenoic acid (DPA) + DHA) was towards catabolism (ß-oxidation) accounting for over 70% of total dietary intake, whereas deposition accounted less than 25% of total dietary intake. It was found that significantly more n-3 LC-PUFA were ß-oxidised when originating from the Constant treatment (84% of dose), compared with the Spike treatment (75% of dose). Conversely, it was found that significantly more n-3 LC-PUFA were deposited when originating from the Spike treatment (23% of dose), than from the Constant treatment (15% of dose). These unexpected findings show that a large dose of n-3 LC-PUFA once per week is more effective in increasing whole body n-3 LC-PUFA content in rats compared with a smaller dose delivered daily.


Assuntos
Dieta , Ácidos Graxos Ômega-3/farmacocinética , Óleos de Peixe/administração & dosagem , Tecido Adiposo/química , Animais , Disponibilidade Biológica , Esquema de Medicação , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-3/metabolismo , Óleos de Peixe/metabolismo , Coração , Fígado/química , Masculino , Músculo Esquelético/química , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...