Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Indian J Med Microbiol ; 48: 100548, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38403268

RESUMO

BACKGROUND: Emerging infectious diseases, often zoonotic, demand a collaborative "One-Health" surveillance approach due to human activities. The need for standardized diagnostic and surveillance algorithms is emphasized to address the difficulty in clinical differentiation and curb antimicrobial resistance. OBJECTIVE: The present recommendations are comprehensive diagnostic and surveillance algorithm for ARIs, developed by the Indian Council of Medical Research (ICMR), which aims to enhance early detection and treatment with improved surveillance. This algorithm shall be serving as a blueprint for respiratory infections landscape in the country and early detection of surge of respiratory infections in the country. CONTENT: The ICMR has risen up to the threat of emerging and re-emerging infections. Here, we seek to recommend a structured approach for diagnosing respiratory illnesses. The recommendations emphasize the significance of prioritizing respiratory pathogens based on factors such as the frequency of occurrence (seasonal or geographical), disease severity, ease of diagnosis and public health importance. The proposed surveillance-based diagnostic algorithm for ARI relies on a combination of gold-standard conventional methods, innovative serological and molecular techniques, as well as radiological approaches, which collectively contribute to the detection of various causative agents. The diagnostic part of the integrated algorithm can be dealt at the local microbiology laboratory of the healthcare facility with the few positive and negative specimens shipped to linked viral disease research laboratories (VRDLs) and other ICMR designated laboratories for genome characterisation, cluster identification and identification of novel agents.


Assuntos
Infecções Respiratórias , Humanos , Índia/epidemiologia , Infecções Respiratórias/diagnóstico , Algoritmos , Monitoramento Epidemiológico , Doenças Transmissíveis Emergentes/diagnóstico , Doenças Transmissíveis Emergentes/epidemiologia
2.
Front Public Health ; 11: 1218292, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927860

RESUMO

Background: Over time, COVID-19 testing has significantly declined across the world. However, it is critical to monitor the virus through surveillance. In late 2020, WHO released interim guidance advising the use of the existing Global Influenza Surveillance and Response System (GISRS) for the integrated surveillance of influenza and SARS-CoV-2. Methods: In July 2021, we initiated a pan-India integrated surveillance for influenza and SARS-CoV-2 through the geographically representative network of Virus Research and Diagnostic Laboratories (VRDLs) across 26 hospital and laboratory sites and 70 community sites. A total of 34,260 cases of influenza-like illness (ILI) and Severe acute respiratory infection (SARI) were enrolled from 4 July 2021 to 31 October 2022. Findings: Influenza A(H3) and B/Victoria dominated during 2021 monsoon season while A(H1N1)pdm09 dominated during 2022 monsoon season. The SARS-CoV-2 "variants of concern" (VoC) Delta and Omicron predominated in 2021 and 2022, respectively. Increased proportion of SARI was seen in extremes of age: 90% cases in < 1 year; 68% in 1 to 5 years and 61% in ≥ 8 years age group. Approximately 40.7% of enrolled cases only partially fulfilled WHO ILI and SARI case definitions. Influenza- and SARS-CoV-2-infected comorbid patients had higher risks of hospitalization, ICU admission, and oxygen requirement. Interpretation: The results depicted the varying strains and transmission dynamics of influenza and SARS-CoV-2 viruses over time, thus emphasizing the need to continue and expand surveillance across countries for improved decision making. The study also describes important information related to clinical outcomes of ILI and SARI patients and highlights the need to review existing WHO ILI and SARI case definitions.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Pneumonia , Viroses , Humanos , Influenza Humana/epidemiologia , Teste para COVID-19 , Vírus da Influenza A Subtipo H1N1/genética , Genômica , Índia/epidemiologia
3.
Indian J Med Res ; 157(6): 519-523, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37530306

RESUMO

Background & objectives: The diagnosis of scrub typhus (ST) is usually done using enzyme-linked immunosorbent assay (ELISA) due to its ease of performance and reading objectivity. The cut-off value for ELISA needs to be calculated for each geographical location as it depends on zonal endemicity of the disease. This study was, therefore, undertaken to calculate the pan-India cut-off for anti-Orientia tsutsugamushi (OT) immunoglobulin M (IgM) by ELISA. Methods: Samples from cases (cases of ST) and controls (voluntary, consenting, healthy adults) were collected by a network of 29 laboratories across India and tested for anti-OT IgM by immunofluorescence assay (IFA), the considered gold standard test. These samples were retested by ELISA for anti-OT IgM and their optical densities (ODs) were used for cut-off estimation by receiver operating characteristic (ROC) curve. Results: Anti-OT IgM ELISA ODs from 273 controls and 136 cases were used for the cut-off estimation. The ODs of the anti-OT IgM ELISA on healthy individuals and those of confirmed ST cases ranged from 0.1 to 0.75 and 0.5 to 4.718, respectively. ROC curve-based cut-off for ELISA was calculated as 0.554 at a sensitivity of 95.2 per cent and specificity of 95.1 per cent. A value of >1 was noted to have a specificity of 100 per cent in diagnosing ST. Interpretation & conclusions: The cut-off calculated for India was similar to the previous cut-off that was used until now.


Assuntos
Orientia tsutsugamushi , Tifo por Ácaros , Adulto , Humanos , Tifo por Ácaros/diagnóstico , Imunoglobulina M , Sensibilidade e Especificidade , Antígenos de Bactérias , Anticorpos Antibacterianos , Ensaio de Imunoadsorção Enzimática
4.
IJID Reg ; 6: 113-119, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36846076

RESUMO

Introduction: Dengue, chikungunya and Japanese encephalitis are the most common arthropod-borne viral diseases in India. Due to overlapping clinical symptoms, accurate, high-quality and timely laboratory-based differential diagnosis is essential for control and containment of outbreaks. This is most commonly done by detection of IgM antibodies in serum using enzyme-linked immunosorbent assays. The Resource Centre for Virus Research and Diagnostic Laboratories (VRDLs) in Pune, India organized an external quality assurance (EQA) study to check the accuracy of serological diagnostics in the VRDL network. Methods: Three panels, one each for anti-dengue virus, anti-chikungunya virus and anti-Japanese encephalitis virus IgM antibodies, comprising six human serum samples (two positive and four negative) were distributed to test the sensitivity, specificity and reproducibility of serological testing in 124 VRDLs across India in 2018-19 and 2019-20. Results: Among the 124 VRDLs, the average concordance for both 2018-19 and 2019-20 was 98%. In 2018-19, 78.33%, 13.33% and 6.66% of VRDLs reported 100% concordance, 91-99% concordance and 81-90% concordance with the reference results, respectively, and 1.66% of VRDLs had concordance <80%. In 2019-20, 79.68%, 14.06% and 4.68% of VRDLs reported 100% concordance, 91-99% concordance and 81-90% concordance with the reference results, respectively, and 1.56% of VRDLs had concordance <80%. Conclusion: The EQA programme was beneficial for assessing and understanding the performance of the VRDLs. The study data indicate good proficiency in serological diagnosis of dengue, chikungunya and Japanese encephalitis in the VRDL network laboratories. Further expansion of the EQA programme to cover other viruses of public health importance will increase confidence among the VRDL network, and generate evidence of high-quality testing.

5.
Indian J Med Res ; 155(1): 86-90, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35859435

RESUMO

To implement the strategy of test, track and treat to tackle the ongoing COVID-19 pandemic, the number of real-time RT-PCR-based testing laboratories was increased for diagnosis of SARS-CoV-2 in the country. To ensure reliability of the laboratory results, the Indian Council of Medical Research initiated external quality assessment (EQA) by deploying inter-laboratory quality control (ILQC) activity for these laboratories by nominating 34 quality control (QC) laboratories. This report presents the results of this activity for a period of September 2020 till November 2020. A total of 597 laboratories participated in this activity and 86 per cent of these scored ≥90 per cent concordance with QC laboratories. This ILQC activity showcased India's preparedness in quality diagnosis of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Humanos , Pandemias , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética
6.
Front Microbiol ; 13: 888195, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756041

RESUMO

Background: During the second wave of the COVID-19 pandemic, outbreaks of Zika were reported from Kerala, Uttar Pradesh, and Maharashtra, India in 2021. The Dengue and Chikungunya negative samples were retrospectively screened to determine the presence of the Zika virus from different geographical regions of India. Methods: During May to October 2021, the clinical samples of 1475 patients, across 13 states and a union territory of India were screened and re-tested for Dengue, Chikungunya and Zika by CDC Trioplex Real time RT-PCR. The Zika rRTPCR positive samples were further screened with anti-Zika IgM and Plaque Reduction Neutralization Test. Next generation sequencing was used for further molecular characterization. Results: The positivity was observed for Zika (67), Dengue (121), and Chikungunya (10) amongst screened cases. The co-infections of Dengue/Chikungunya, Dengue/Zika, and Dengue/Chikungunya/Zika were also observed. All Zika cases were symptomatic with fever (84%) and rash (78%) as major presenting symptoms. Of them, four patients had respiratory distress, one presented with seizures, and one with suspected microcephaly at birth. The Asian Lineage of Zika and all four serotypes of Dengue were found in circulation. Conclusion: Our study indicates the spread of the Zika virus to several states of India and an urgent need to strengthen its surveillance.

7.
Bull World Health Organ ; 100(4): 247-255, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35386556

RESUMO

Objective: To expand the measles and rubella laboratory network of India by integrating new laboratories. Methods: In collaboration with the World Health Organization (WHO), the Indian government developed a 10-step scheme to systematically expand the number of laboratories performing serological and molecular testing for measles and rubella. The Indian Council of Medical Research and WHO identified suitable laboratories based on their geographical location, willingness, preparedness, past performance and adherence to national quality control and quality assurance mechanisms. The 10-step scheme was initiated with training on measles and rubella diagnostic assays followed by testing of both measles and rubella serology and molecular unknown panels, cross-verification with reference laboratories and ended with WHO on-site accreditation. Findings: After extensive training, technical support, funding and monitoring, all six selected laboratories attained passing scores of 90.0% or more in serological and molecular proficiency testing of measles and rubella. Since 2018, the laboratories are a part of the measles and rubella network of India. Within 12 months of initiation of independent reporting, the six laboratories have tested 2287 serum samples and 701 throat or nasopharyngeal swabs or urine samples. Conclusion: The process led to strengthening and expansion of the network. This proficient laboratory network has helped India in scaling up serological and molecular testing of measles and rubella while ensuring high quality testing. The collaborative model developed by the Indian government with WHO can be implemented by other countries for expanding laboratory networks for surveillance of measles and rubella as well as other infectious diseases.


Assuntos
Sarampo , Rubéola (Sarampo Alemão) , Saúde Global , Humanos , Índia , Laboratórios , Sarampo/diagnóstico , Sarampo/epidemiologia , Sarampo/prevenção & controle , Rubéola (Sarampo Alemão)/diagnóstico , Rubéola (Sarampo Alemão)/epidemiologia , Rubéola (Sarampo Alemão)/prevenção & controle
8.
J Med Virol ; 94(7): 3404-3409, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35211985

RESUMO

International travel has been the major source for the rapid spread of new SARS-CoV-2 variants across the globe. During SARS-CoV-2 genomic surveillance, a total of 212 SARS-CoV-2 positive clinical specimens were sequenced using next-generation sequencing. A complete SARS-CoV-2 genome could be retrieved from 90 clinical specimens. Of them, 14 sequences belonged to the Eta variant from clinical specimens of international travelers (n = 12) and local residents (n = 2) of India, and 76 belonged to other SARS-CoV-2 variants. Of all the Eta-positive specimens, the virus isolates were obtained from the clinical specimens of six international travelers. Many variants of interest have been found to cause substantial community transmission or cluster infections. The detection of this variant with lethal E484K mutation across the globe and India necessitates persistent genomic surveillance of the SARS-CoV-2 variants, which would aid in taking preventive action.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , SARS-CoV-2/genética
9.
PLoS One ; 17(2): e0263736, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35134089

RESUMO

Sudden emergence and rapid spread of COVID-19 created an inevitable need for expansion of the COVID-19 laboratory testing network across the world. The strategy to test-track-treat was advocated for quick detection and containment of the disease. Being the second most populous country in the world, India was challenged to make COVID-19 testing available and accessible in all parts of the country. The molecular laboratory testing network was augmented expeditiously, and number of laboratories was increased from one in January 2020 to 2951 till mid-September, 2021. This rapid expansion warranted the need to have inbuilt systems of quality control/ quality assurance. In addition to the ongoing inter-laboratory quality control (ILQC), India implemented an External Quality Assurance Program (EQAP) with assistance from World Health Organization (WHO) and Royal College of Pathologists, Australasia. Out of the 953 open system rRTPCR laboratories in both public and private sector who participated in the first round of EQAP, 891(93.4%) laboratories obtained a passing score of > = 80%. The satisfactory performance of Indian COVID-19 testing laboratories has boosted the confidence of the public and policy makers in the quality of testing. ILQC and EQAP need to continue to ensure adherence of the testing laboratories to the desired quality standards.


Assuntos
Teste para COVID-19/normas , COVID-19/diagnóstico , Técnicas de Laboratório Clínico/normas , Laboratórios/normas , Programas de Rastreamento/normas , Garantia da Qualidade dos Cuidados de Saúde/normas , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , COVID-19/epidemiologia , COVID-19/genética , COVID-19/virologia , Humanos , Índia/epidemiologia , Controle de Qualidade , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Manejo de Espécimes/métodos
10.
J Infect Public Health ; 15(2): 182-186, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34974274

RESUMO

BACKGROUND: The emergence of SARS-CoV-2 variants in places where the virus is uncontained poses a global threat from the perspective of public health and vaccine efficacy. Travel has been important factor for the easy spread of SARS-CoV-2 variants worldwide. India has also observed the importation of SARS-CoV-2 variants through international travelers. METHODS: In this study, we have collected the oropharyngeal and nasopharyngeal swab specimens from 58 individuals with travel history from United Arab Emirates (UAE), East, West and South Africa, Qatar, Ukraine and Saudi Arabia arrived in India during February-March 2021. The clinical specimens were initially screened for SARS-CoV-2 using Real time RT-PCR. All the specimens were inoculated on to Vero CCL-81 cells for virus isolation. The viral isolates were further sequenced using Next-Generation Sequencing. RESULTS: All 58 cases were tested positive for SARS-CoV-2 using Real time RT-PCR. Four specimens showed progressive infectivity with fusion of the infected cells with neighboring cells leading to large mass of cells. Replication competent virus was confirmed from culture supernatant of the passage 2 using Real time RT-PCR. Two plaque purified SARS-CoV-2 isolates demonstrated high viral RNA load of 3.8-7.5 × 1011 and 1.1-1.6 × 1011 at passage 4 and 5 respectively. Nucleotide variations along with amino acid changes were also observed among these two isolates at passage 2-5. All four cases were male with no symptoms and co-morbidity. The sequence analysis has shown two different clusters, first cluster with nucleotide deletions in the ORF1ab and the spike, while second cluster with deletions in spike region. The viral isolates demonstrated 99.88-99.96% nucleotide identity with the representative sequences of Beta variant (B.1.351). CONCLUSION: These findings suggest easier transmission of SARS-CoV-2 variants with human mobility through international travel. The isolated Beta variant would be useful to determine the protective efficacy of the currently available and upcoming COVID-19 vaccines in India.


Assuntos
COVID-19 , SARS-CoV-2 , Vacinas contra COVID-19 , Humanos , Masculino , Emirados Árabes Unidos
14.
Viruses ; 13(9)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34578363

RESUMO

From March to June 2021, India experienced a deadly second wave of COVID-19, with an increased number of post-vaccination breakthrough infections reported across the country. To understand the possible reason for these breakthroughs, we collected 677 clinical samples (throat swab/nasal swabs) of individuals from 17 states/Union Territories of the country who had received two doses (n = 592) and one dose (n = 85) of vaccines and tested positive for COVID-19. These cases were telephonically interviewed and clinical data were analyzed. A total of 511 SARS-CoV-2 genomes were recovered with genome coverage of higher than 98% from both groups. Analysis of both groups determined that 86.69% (n = 443) of them belonged to the Delta variant, along with Alpha, Kappa, Delta AY.1, and Delta AY.2. The Delta variant clustered into four distinct sub-lineages. Sub-lineage I had mutations in ORF1ab A1306S, P2046L, P2287S, V2930L, T3255I, T3446A, G5063S, P5401L, and A6319V, and in N G215C; Sub-lineage II had mutations in ORF1ab P309L, A3209V, V3718A, G5063S, P5401L, and ORF7a L116F; Sub-lineage III had mutations in ORF1ab A3209V, V3718A, T3750I, G5063S, and P5401L and in spike A222V; Sub-lineage IV had mutations in ORF1ab P309L, D2980N, and F3138S and spike K77T. This study indicates that majority of the breakthrough COVID-19 clinical cases were infected with the Delta variant, and only 9.8% cases required hospitalization, while fatality was observed in only 0.4% cases. This clearly suggests that the vaccination does provide reduction in hospital admission and mortality.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , Genoma Viral , Genômica , SARS-CoV-2/genética , Adulto , COVID-19/diagnóstico , Comorbidade , Surtos de Doenças , Feminino , Geografia Médica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Filogenia , Vigilância em Saúde Pública , SARS-CoV-2/classificação
15.
J Med Virol ; 93(12): 6696-6702, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34331713

RESUMO

The pandemic of COVID-19 has caused enormous fatalities worldwide. Serological assays are important for detection of asymptomatic or mild cases of COVID-19, and sero-prevalence and vaccine efficacy studies. Here, we evaluated and compared the performance of seven commercially available enzyme-linked immunosorbent assay (ELISA)s for detection of anti-severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) immunoglobulin G (IgG). The ELISAs were evaluated with a characterized panel of 100 serum samples from qRT-PCR confirmed COVID-19 patients, collected 14 days post onset disease, 100 SARS-CoV-2 negative samples and compared the results with that of neutralization assay. Results were analysed by creating the receiver operating characteristic curve of all the assays in reference to the neutralization assay. All kits, were found to be suitable for detection of IgG against SARS-CoV-2 with high accuracy. The DiaPro COVID-19 IgG ELISA showed the highest sensitivity (98%) among the kits. The assays demonstrated high sensitivity and specificity in detecting the IgG antibodies against SARS-CoV-2. However, the presence of IgG antibodies does not always correspond to neutralizing antibodies. Due to their good accuracy indices, these assays can also aid in tracing mild infections, in cohort studies and in pre-vaccine evaluations.


Assuntos
Anticorpos Antivirais/sangue , Teste para COVID-19/métodos , Ensaio de Imunoadsorção Enzimática , Imunoglobulina G/sangue , SARS-CoV-2/imunologia , Anticorpos Antivirais/imunologia , COVID-19/diagnóstico , COVID-19/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/normas , Humanos , Imunoglobulina G/imunologia , Testes de Neutralização , Kit de Reagentes para Diagnóstico , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade
16.
Viruses ; 13(5)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067745

RESUMO

The number of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) cases is increasing in India. This study looks upon the geographic distribution of the virus clades and variants circulating in different parts of India between January and August 2020. The NPS/OPS from representative positive cases from different states and union territories in India were collected every month through the VRDLs in the country and analyzed using next-generation sequencing. Epidemiological analysis of the 689 SARS-CoV-2 clinical samples revealed GH and GR to be the predominant clades circulating in different states in India. The northern part of India largely reported the 'GH' clade, whereas the southern part reported the 'GR', with a few exceptions. These sequences also revealed the presence of single independent mutations-E484Q and N440K-from Maharashtra (first observed in March 2020) and Southern Indian States (first observed in May 2020), respectively. Furthermore, this study indicates that the SARS-CoV-2 variant (VOC, VUI, variant of high consequence and double mutant) was not observed during the early phase of virus transmission (January-August). This increased number of variations observed within a short timeframe across the globe suggests virus evolution, which can be a step towards enhanced host adaptation.


Assuntos
COVID-19/epidemiologia , Filogeografia/métodos , SARS-CoV-2/genética , Adulto , COVID-19/genética , Feminino , Genoma Viral/genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , Filogenia , SARS-CoV-2/patogenicidade
18.
Indian J Med Res ; 152(1 & 2): 88-94, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32893844

RESUMO

BACKGROUND & OBJECTIVES: Public health and diagnostic laboratories are facing huge sample loads for COVID-19 diagnosis by real-time reverse transcription-polymerase chain reaction (RT-PCR). High sensitivity of optimized real-time RT-PCR assays makes pooled testing a potentially efficient strategy for resource utilization when positivity rates for particular regions or groups of individuals are low. We report here a comparative analysis of pooled testing for 5- and 10-sample pools by real-time RT-PCR across 10 COVID-19 testing laboratories in India. METHODS: Ten virus research and diagnostic laboratories (VRDLs) testing for COVID-19 by real-time RT-PCR participated in this evaluation. At each laboratory, 100 nasopharyngeal swab samples including 10 positive samples were used to create 5- and 10-sample pools with one positive sample in each pool. RNA extraction and real-time RT-PCR for SARS-CoV-2-specific E gene target were performed for individual positive samples as well as pooled samples. Concordance between individual sample testing and testing in the 5- or 10-sample pools was calculated, and the variation across sites and by sample cycle threshold (Ct) values was analyzed. RESULTS: A total of 110 each of 5- and 10-sample pools were evaluated. Concordance between the 5-sample pool and individual sample testing was 100 per cent in the Ct value ≤30 cycles and 95.5 per cent for Ctvalues ≤33 cycles. Overall concordance between the 5-sample pooled and individual sample testing was 88 per cent while that between 10-sample pool and individual sample testing was 66 per cent. Although the concordance rates for both the 5- and 10-sample pooled testing varied across laboratories, yet for samples with Ct values ≤33 cycles, the concordance was ≥90 per cent across all laboratories for the 5-sample pools. INTERPRETATION & CONCLUSIONS: Results from this multi-site assessment suggest that pooling five samples for SARS-CoV-2 detection by real-time RT-PCR may be an acceptable strategy without much loss of sensitivity even for low viral loads, while with 10-sample pools, there may be considerably higher numbers of false negatives. However, testing laboratories should perform validations with the specific RNA extraction and RT-PCR kits in use at their centres before initiating pooled testing.


Assuntos
Betacoronavirus/isolamento & purificação , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , RNA Viral/isolamento & purificação , Betacoronavirus/genética , Betacoronavirus/patogenicidade , COVID-19 , Teste para COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/virologia , Testes Diagnósticos de Rotina/métodos , Feminino , Humanos , Índia/epidemiologia , Masculino , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/genética , Pneumonia Viral/virologia , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Testes Sorológicos , Manejo de Espécimes , Carga Viral/genética
20.
Virus Res ; 286: 198046, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32505728

RESUMO

Crimean Congo hemorrhagic fever (CCHF) is a zoonotic viral disease presenting with fever and hemorrhagic manifestations in humans. After several outbreaks of CCHF being reported from Gujarat since 2011 till 2019 and from Rajasthan in 2014 and 2015, the present study reports the CCHF outbreak which was recorded from five human cases in three districts Jodhpur, Jaisalmer, and Sirohi of Rajasthan state since August 2019 till November 2019. A high percent of positivity was recorded in livestock animal samples for the CCHFV IgG antibody. CCHF virus (CCHFV) positive human blood samples and Hyalomma tick pool samples were sequenced using next-generation sequencing method. Two different M segment genotypes, encoding glycoprotein precursor, were identified from tick pools in the study: first from Asian and second from African lineage. The L gene (polymerase) and the S gene (nucleocapsid) clustered in the Asian lineage. The present study illustrates the existence of two different CCHFV lineages being circulating within the Hyalomma tick pools in the Rajasthan state, India. We also observed 3.56% amino acid changes between the death and the survived case of CCHFV in the M gene. This report also sets an alarm to enhance human, tick and livestock surveillance in other districts of Rajasthan and nearby states of India. Biosafety measures, barrier nursing along with the availability of personal protective equipment and ribavirin drug will always be a mainstay in preventing nosocomial infection for proper case management.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo/classificação , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Febre Hemorrágica da Crimeia/epidemiologia , Carrapatos/virologia , Zoonoses Virais/epidemiologia , Adolescente , Adulto , África , Animais , Anticorpos Antivirais/sangue , Surtos de Doenças , Feminino , Genótipo , Vírus da Febre Hemorrágica da Crimeia-Congo/patogenicidade , Febre Hemorrágica da Crimeia/transmissão , Humanos , Índia/epidemiologia , Gado/virologia , Masculino , Filogenia , RNA Viral/genética , Proteínas Virais/genética , Zoonoses Virais/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...