Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virus Res ; 341: 199331, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38280436

RESUMO

Dengue virus infection in humans ranges from asymptomatic infection to severe infection, with ∼2.5 % overall disease fatality rate. Evidence of neurological manifestations is seen in the severe form of the disease, which might be due to the direct invasion of the viruses into the CNS system but is poorly understood. In this study, we demonstrated that the aged AG129 mice are highly susceptible to dengue serotypes 1-4, and following the adaptation, this resulted in the generation of neurovirulent strains that showed enhanced replication, aggravated disease severity, increased neuropathogenesis, and high lethality in both adult and aged AG129 mice. The infected mice had endothelial dysfunction, elicited pro-inflammatory cytokine responses, and exhibited 100 % mortality. Further analysis revealed that aged-adapted DENV strains induced measurable alterations in TLR expression in the aged mice as compared to the adult mice. In addition, metabolomics analysis of the serum samples from the infected adult mice revealed dysregulation of 18 metabolites and upregulation of 6-keto-prostaglandin F1 alpha, phosphocreatine, and taurocholic acid. These metabolites may serve as key biomarkers to decipher and comprehend the severity of dengue-associated severe neuro-pathogenesis.


Assuntos
Vírus da Dengue , Dengue , Humanos , Animais , Camundongos , Idoso , Vírus da Dengue/fisiologia , Citocinas/metabolismo , Modelos Animais de Doenças
2.
Bioorg Chem ; 131: 106277, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36444792

RESUMO

A series of thiazole linked Oxindole-5-Sulfonamide (OSA) derivatives were designed as inhibitors of RNA-dependent RNA polymerase (RdRp) activity of Dengue virus. These were synthesized and then evaluated for their efficacy in ex-vivo virus replication assay using human cell lines. Among 20 primary compounds in the series, OSA-15 was identified as a hit. A series of analogues were synthesized by replacing the difluoro benzyl group of OSA-15 with different substituted benzyl groups. The efficacy of OSA-15derivatives was less than that of the parent compound, except OSA-15-17, which has shown improved efficacy than OSA-15. The further optimization was carried out by adding dimethyl (DM) groups to both the sulfonamide and oxindole NH's to produce OSA-15-DM and OSA-15-17-DM. These two compounds were showing no detectable cytotoxicity and the latter was more efficacious. Further, both these compounds were tested for inhibition in all the serotypes of the Dengue virus using an ex-vivo assay. The EC50 of OSA-15-17-DM was observed in a low micromolar range between 2.5 and 5.0 µg/ml. Computation docking and molecular dynamics simulation studies confirmed the binding of identified hits to DENV RdRp. OSA15-17-DM blocks the RNA entrance and elongation site for their biological activity with high binding affinity. Overall, the identified oxindole derivatives are novel compounds that can inhibit Dengue replication, working as non-nucleoside inhibitors (NNI) to explore as anti-viral RdRp activity.


Assuntos
Antivirais , Dengue , Oxindóis , Antivirais/química , Dengue/tratamento farmacológico , Vírus da Dengue , Simulação de Acoplamento Molecular , Oxindóis/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Sulfonamidas/farmacologia
3.
Environ Monit Assess ; 195(1): 222, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36543983

RESUMO

Surveying, mapping, and characterizing soil properties are the critical steps in designating soil quality. Continuous use of inorganic fertilizers, pesticides, wastewater discharge, and leachates cause soil degradation and contamination of potable water and food ultimately leading to soil pollution and ill effects on human health. This study was undertaken to monitor the soil quality of agricultural soil samples collected from ten different agricultural fields in Ludhiana, Punjab (India), near Buddha Nullah, a Sutlej River tributary. Physico-chemical characteristics and heavy metal contents of soil samples were estimated during the study. The obtained results showed that all the agricultural soil samples were slightly alkaline in nature. Soil nutrients such as nitrates, phosphates, and potassium ranged from 0.06 to 0.11 mg/g, 0.03 to 0.08 mg/g, and 0.04 to 0.15 mg/g respectively. The contents (mg/kg) of heavy metals such as cadmium, chromium, cobalt, copper, and lead were observed to be above the permissible limits in most of the soil samples. Allium cepa root chromosomal aberration assay was used for genotoxicity studies which has shown that Hambran (HBN), a site approx. 12.9 km of the Buddha Nullah, induced maximum genotoxic effects, i.e., 46.7% aberrant cells in root tip cells of Allium cepa. The statistical analysis revealed the positive correlation of heavy metals like Cr, Cu, and Ni (at p ≤ 0.05 and p ≤ 0.01) with the total chromosomal aberrations induced in Allium cepa.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Monitoramento Ambiental , Metais Pesados/análise , Agricultura , Solo/química , Poluição Ambiental/análise , Poluentes do Solo/análise , Medição de Risco
4.
Artigo em Inglês | MEDLINE | ID: mdl-35162623

RESUMO

The present study was carried out to determine the physico-chemical characteristics and heavy metal contents in roadside soil samples collected during 2 sampling periods (September 2018 and April 2019) from 8 different roadside sites lying parallel to the Buddha Nullah, an old rivulet, flowing through Ludhiana, (Punjab) India. The contents (mg/kg) of seven metals (cadmium, chromium, cobalt, copper, lead, nickel and zinc) were estimated using a flame atomic absorption spectrophotometer. Among the metals analyzed, the contents of Cd, Co, Cu, Pb and Zn were found above the permissible limits. The results of the index of geoaccumulation (Igeo), contamination factor (CF), contamination degree (Cdeg), modified contamination degree (mCdeg), the Nemerow pollution index (PI) and pollution load index (PLI) indicate a moderate to high heavy metal contamination of the analyzed soil samples. The results of the potential ecological risk factor (ERi) and potential ecological risk index (RI) indicate a low to moderate risk of heavy metals in the studied soil samples. The Pearson correlation analysis revealed that most of the variables exhibited a statistically significant correlation with one or more variables during the two samplings. Multivariate analysis demonstrates that contents of heavy metals in the study area are influenced by anthropogenic and geogenic factors.


Assuntos
Metais Pesados , Poluentes do Solo , Monitoramento Ambiental , Poluição Ambiental/análise , Índia , Metais Pesados/análise , Medição de Risco , Solo/química , Poluentes do Solo/análise
5.
Blood Cells Mol Dis ; 94: 102653, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35180460

RESUMO

Abnormal coagulation dynamics, including disseminated intravascular coagulopathy, pulmonary embolism, venous thromboembolism and risk of thrombosis are often associated with the severity of COVID-19. However, very little is known about the contribution of platelets in above pathogenesis. In order to decipher the pathophysiology of thrombophilia in COVID-19, we recruited severely ill patients from ICU, based on the above symptoms and higher D-dimer levels, and compared these parameters with their asymptomatic counterparts. Elevated levels of platelet-derived microparticles and platelet-leukocyte aggregates suggested the hyperactivation of platelets in ICU patients. Strikingly, platelet transcriptome analysis showed a greater association of IL-6 and TNF signalling pathways in ICU patients along with higher plasma levels of IL-6 and TNFα. In addition, upregulation of pathways like blood coagulation and hemostasis, as well as inflammation coexisted in platelets of these patients. Further, the increment of necrotic pathway and ROS-metabolic processes in platelets was suggestive of its procoagulant phenotype in ICU patients. This study suggests that higher plasma IL-6 and TNFα may trigger platelet activation and coagulation, and in turn aggravate thrombosis and hypercoagulation in severe COVID-19 patients. Therefore, the elevated IL-6 and TNFα, may serve as potential risk factors for platelet activation and thrombophilia in these patients.


Assuntos
COVID-19 , Micropartículas Derivadas de Células , Trombofilia , Plaquetas/metabolismo , COVID-19/complicações , Micropartículas Derivadas de Células/metabolismo , Citocinas/metabolismo , Humanos , SARS-CoV-2 , Trombofilia/complicações , Regulação para Cima
6.
Front Biosci (Schol Ed) ; 13(1): 44-55, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34256529

RESUMO

Dengue is potentially a life-threatening arthropod-borne viral infection for which there are no known therapeutic agents till date. Early stage diagnosis of dengue infection is still lacking. Diagnosis is only made after severe manifestations and later stages of infection. Timely prognosis can prevent dengue related mortalities. The nucleic acid-based therapy has potential to emerge as a promising approach for early diagnosis and treatment of this viral infection. Many studies have been carried out suggested the regulatory role of ncRNAs thereby revealing the importance of protein-RNA and RNA-RNA interactions during infection. Various regulatory RNAs are either expressed by mammalian cells or generated by viral RNA have reported to play important roles in viral life cycle including dengue virus. Thus exploring host-virus interaction will pave the novel path for understanding the pathophysiology of febrile infection in dengue. Rapid advances in sequencing techniques along with significant developments in the field of RNA studies has made RNA therapeutics as one of the promising approaches as antiviral targets. The idea of RNA based therapies has been greatly backed by a Hepatitis C virus drug, Miravirsen which has successfully completed phase II clinical trial. In the present review, we will discuss the implications of different non-coding RNAs in dengue infection. Differential expression of small ncRNA may serve as a reliable biomarker of disease severity during different stages of infection and can also play regulatory roles in disease progression.


Assuntos
Vírus da Dengue , RNA não Traduzido , RNA Viral , Animais , Vírus da Dengue/genética , Humanos , RNA não Traduzido/genética , RNA Viral/genética
7.
Front Cell Infect Microbiol ; 11: 596201, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859951

RESUMO

COVID-19 is a Severe Acute Respiratory Syndrome (SARS), caused by SARS-CoV-2, a novel virus which belongs to the family Coronaviridae. It was first reported in December 2019 in the Wuhan city of China and soon after, the virus and hence the disease got spread to the entire world. As of February 26, 2021, SARS-CoV-2 has infected ~112.20 million people and caused ~2.49 million deaths across the globe. Although the case fatality rate among SARS-CoV-2 patient is lower (~2.15%) than its earlier relatives, SARS-CoV (~9.5%) and MERS-CoV (~34.4%), the SARS-CoV-2 has been observed to be more infectious and caused higher morbidity and mortality worldwide. As of now, only the knowledge regarding potential transmission routes and the rapidly developed diagnostics has been guiding the world for managing the disease indicating an immediate need for a detailed understanding of the pathogen and the disease-biology. Over a very short period of time, researchers have generated a lot of information in unprecedented ways in the key areas, including viral entry into the host, dominant mutation, potential transmission routes, diagnostic targets and their detection assays, potential therapeutic targets and drug molecules for inhibiting viral entry and/or its replication in the host including cross-neutralizing antibodies and vaccine candidates that could help us to combat the ongoing COVID-19 pandemic. In the current review, we have summarized the available knowledge about the pathogen and the disease, COVID-19. We believe that this readily available knowledge base would serve as a valuable resource to the scientific and clinical community and may help in faster development of the solution to combat the disease.


Assuntos
COVID-19/mortalidade , Saúde Global , Pandemias , China/epidemiologia , Humanos , SARS-CoV-2
8.
Front Microbiol ; 12: 784070, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087488

RESUMO

Dengue virus can infect human megakaryocytes leading to decreased platelet biogenesis. In this article, we report a study of Dengue replication in human K562 cells undergoing PMA-induced differentiation into megakaryocytes. PMA-induced differentiation in these cells recapitulates steps of megakaryopoiesis including gene activation, expression of CD41/61 and CD61 platelet surface markers and accumulation of intracellular reactive oxygen species (ROS). Our results show differentiating megakaryocyte cells to support higher viral replication without any apparent increase in virus entry. Further, Dengue replication suppresses the accumulation of ROS in differentiating cells, probably by only augmenting the activity of the transcription factor NFE2L2 without influencing the expression of the coding gene. Interestingly pharmacological modulation of NFE2L2 activity showed a simultaneous but opposite effect on intracellular ROS and virus replication suggesting the former to have an inhibitory effect on the later. Also cells that differentiated while supporting intracellular virus replication showed reduced level of surface markers compared to uninfected differentiated cells.

9.
Environ Geochem Health ; 43(7): 2699-2722, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32949005

RESUMO

Diverse genotoxic agents, entering the aquatic environment through natural and anthropogenic events, pose serious threats to its biotic components. The present study involves the monitoring of water quality by assessing the genotoxic effects and physico-chemical parameters including heavy metals of 10 surface water samples collected from different locations of Buddha Nullah, a tributary of Sutlej flowing through Ludhiana, Punjab (India). Genotoxicity was evaluated following Allium cepa root chromosomal aberration assay and DNA nicking assay using plasmid (pBR322) whilst the metal (cadmium, chromium, cobalt, copper, lead, nickel and zinc) analysis was conducted using atomic absorption spectrophotometer. All water samples collected from the study area had cobalt and lead content more than the permissible limits (0.04 and 0.01, respectively) recommended by the Bureau of Indian Standards and the World Health Organization. The samples also induced genotoxicity following both bioassays. The water samples collected from Gaunspur (GP), a site approx. 75.53 km upstream of the Sutlej-Buddha Nullah joining point, has shown the maximum genotoxic effect, i.e. 38.62% in terms of per cent total aberrant cells during A. cepa assay and 100% DNA damage during DNA nicking assay. The Pearson correlation indicated that genotoxicity had a significant positive correlation with the content of cobalt (at p ≤ 0.5). During cluster analysis, the samples from 10 sites formed four statistically significant clusters based on the level of pollution that was dependent on two factors like similarity in physico-chemical characteristics and source of pollution at a specific site.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água/análise , Qualidade da Água/normas , Água/análise , Índia , Metais Pesados/análise , Cebolas/genética , Espectrofotometria Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...