Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Cureus ; 16(3): e57336, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38690475

RESUMO

The global spread of COVID-19 has led to significant mortality and morbidity worldwide. Early identification of COVID-19 patients who are at high risk of developing severe disease can help in improved patient management, care, and treatment, as well as in the effective allocation of hospital resources. The severity prediction at the time of hospitalization can be extremely helpful in deciding the treatment of COVID-19 patients. To this end, this study presents an interpretable artificial intelligence (AI) model, named COVID-19 severity predictor (CoSP) that predicts COVID-19 severity using the clinical features at the time of hospital admission. We utilized a dataset comprising 64 demographic and laboratory features of 7,416 confirmed COVID-19 patients that were collected at the time of hospital admission. The proposed hierarchical CoSP model performs four-class COVID severity risk prediction into asymptomatic, mild, moderate, and severe categories. CoSP yielded better performance with good interpretability, as observed via Shapley analysis on COVID severity prediction compared to the other popular ML methods, with an area under the received operating characteristic curve (AUC-ROC) of 0.95, an area under the precision-recall curve (AUPRC) of 0.91, and a weighted F1-score of 0.83. Out of 64 initial features, 19 features were inferred as predictive of the severity of COVID-19 disease by the CoSP model. Therefore, an AI model predicting COVID-19 severity may be helpful for early intervention, optimizing resource allocation, and guiding personalized treatments, potentially enabling healthcare professionals to save lives and allocate resources effectively in the fight against the pandemic.

2.
Am J Med Genet A ; : e63592, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568023

RESUMO

Distal arthrogryposis type 5D (DA5D) is clinically characterized by knee extension contractures, distal joint contractures, clubfoot, micrognathia, ptosis, and scoliosis. We report nine affected individuals from eight unrelated Indian families with DA5D. Although the overall musculoskeletal phenotype is not very distinct from other distal arthrogryposis, the presence of fixed knee extension contractures with or without scoliosis could be an important early pointer to DA5D. We also report a possible founder variant in ECEL1 along with four novel variants and further expand the genotypic spectrum of DA5D.

3.
Int J Biol Macromol ; 265(Pt 2): 130913, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508544

RESUMO

Aurora kinases (AURKs) are a family of serine /threonine protein kinases that have a crucial role in cell cycle process mainly in the event of chromosomal segregation, centrosome maturation and cytokinesis. The family consists of three members including Aurora kinase A (AURK-A), Aurora kinase B (AURK-B) and Aurora kinase C (AURK-C). All AURKs contain a conserved kinase domain for their activity but differ in their cellular localization and functions. AURK-A and AURK-B are expressed mainly in somatic cells while the expression of AURK-C is limited to germ cells. AURK-A promotes G2 to M transition of cell cycle by controlling centrosome maturation and mitotic spindle assembly. AURK-B and AURK-C form the chromosome passenger complex (CPC) that ensures proper chromosomal alignments and segregation. Aberrant expression of AURK-A and AURK-B has been detected in several solid tumours and malignancies. Hence, they have become an attractive therapeutic target against cancer. The first part of this review focuses on AURKs structure, functions, subcellular localization, and their role in tumorigenesis. The review also highlights the functional and clinical impact of selective as well as pan kinase inhibitors. Currently, >60 compounds that target AURKs are in preclinical and clinical studies. The drawbacks of existing inhibitors like selectivity, drug resistance and toxicity have also been addressed. Since, majority of inhibitors are Aurora kinase inhibitor (AKI) type-1 that bind to the active (DFGin and Cin) conformation of the kinase, this information may be utilized to design highly selective kinase inhibitors that can be combined with other therapeutic agents for better clinical outcomes.


Assuntos
Neoplasias , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Divisão Celular , Proteínas de Ciclo Celular/genética , Segregação de Cromossomos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 312: 124047, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38394881

RESUMO

Aurora kinase B (AURK-B) is a serine/threonine kinase protein that plays an essential role in chromosomal separation during the cell cycle event. AURK-B is highly expressed in various types of cancer such as human seminoma, thyroid carcinoma, non-small cell lung carcinoma (NSCLC), oral carcinoma, and gastric cancer. Hence, it is a potential therapeutic target in the treatment of various cancers. The structure of AURK-B in complex with one of its substrate inner centromeric protein (INCENP) is present, but the structural and functional characterization of native AURK-B at different pH environment is still unexplored.This study determines the effect of different pH milieu on the structure and function of AURK-B protein wherein the influence of pH on the protein conformation was probed using Circular dichroism (CD) and fluorescence spectroscopy. The structural studies were further combined with functional activity assay to observe the change in kinase activity at various pH milieu (2.0-11.0). CD and fluorescence spectroscopy experiments dictate that at high acidic conditions (pH 2.0 - 5.0), the secondary and tertiary structures of AURK-B become distorted, leading to diminished activity. The protein, however, was observed to stabilize towards pH 7.0 - 8.0 with minimal structure alteration over the basic pH range (pH 9.0 -11.0). The measured spectroscopic structural features were found to be in-line with obtained experimental kinase activity assays. Further, in-vitro experiments indicate that the enzyme is maximally active at pH 8.0. More ordered conformation and compact structure was observed at this pH (pH 8.0) as compared to other pH values through molecular dynamics simulation studies (MDS). As AURK-B localizes itself in the intracellular compartment, this study may provide a clue about the role of different pH environments in enhancing cancer growth, proliferation, and invasion.


Assuntos
Carcinoma , Proteínas Serina-Treonina Quinases , Humanos , Aurora Quinase B/metabolismo , Concentração de Íons de Hidrogênio , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo
5.
Int J Biol Macromol ; 261(Pt 1): 129728, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272423

RESUMO

The intracellular bacteria, Salmonella Typhi adapts to acidic conditions in the host cell by resetting the chromosomal DNA topology majorly controlled by DNA Gyrase, a Type II topoisomerase. DNA Gyrase forms a heterodimer A2B2 complex, which manages the DNA supercoiling and relaxation in the cell. DNA relaxation forms a part of the regulatory mechanism to activate the transcription of genes required to survive under hostile conditions. Acid-induced stress attenuates the supercoiling activity of the DNA Gyrase, resulting in DNA relaxation. Salmonella DNA becomes relaxed as the bacteria adapt to the acidified intracellular environment. Despite comprehensive studies on DNA Gyrase, the mechanism to control supercoiling activity needs to be better understood. A loss in supercoiling activity in E. coli was observed upon deletion of the non-conserved acidic C-tail of Gyrase A subunit. Salmonella Gyrase also contains an acidic tail at the C-terminus of Gyrase A, where its deletion resulted in reduced supercoiling activity compared to wild-type Gyrase. Interestingly, we also found that wild-type Gyrase compromises supercoiling activity at acidic pH 2-3, thereby causing DNA relaxation. The absence of a C-tail displayed DNA supercoiling to some extent between pH 2-9. Hence, the C-tail of Gyrase A might be one of the controlling factors that cause DNA relaxation in Salmonella at acidic pH conditions. We propose that the presence of the C-tail of GyraseA causes acid-mediated inhibition of the negative supercoiling activity of Gyrase, resulting in relaxed DNA that attracts DNA-binding proteins for controlling the transcriptional response.


Assuntos
DNA Girase , Salmonella typhi , DNA Girase/genética , Salmonella typhi/genética , Escherichia coli/genética , DNA , DNA Super-Helicoidal/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/metabolismo
6.
J Biomol Struct Dyn ; : 1-13, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38239064

RESUMO

Acinetobacter baumannii is one of the multi-drug-resistant pathogens responsible for hospital-acquired infections reported worldwide. Clinically it is challenging to treat these pathogens as they have developed resistance against the existing class of antibiotics. Hence, there is an urgent need to develop a new class of antibiotics against these pathogens to prevent the spread of infections and mortality. In Acinetobacter baumannii, the filamentous temperature-sensitive mutant Z protein polymerizes at the imminent division site to form a Z-ring at the mid-point of the cell and act as a scaffold to recruit other cell division proteins involved in orchestrating septum synthesis in bacteria. Perturbation in the assembly of FtsZ affects bacterial cell dynamics and survival. Hence, FtsZ has emerged as a new drug target in antibiotic discovery to identify compounds that inhibit bacterial cell division. In this study, we have performed a virtual screening of 30,000 compounds from the ZINC Biogenic natural compound library targeting the nucleotide-binding site of FtsZ from Acinetobacter baumannii. We have identified 8 new natural compounds with binding energy in the range of -8.66 to -6.953 kcal/mol and analyzed them by 200 ns molecular dynamics simulations. Out of these eight compounds, ZINC14708526 showed the best binding with relatively optimal drug-likeness and medicinal chemistry as a potent inhibitor of abFtsZ. Thus, the identified FtsZ inhibitor ZINC14708526 is a promising lead compound to develop potent antimicrobial agents against Acinetobacter baumannii infections.Communicated by Ramaswamy H. Sarma.

7.
J Biomol Struct Dyn ; : 1-12, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37643005

RESUMO

The p53 Y220C is one of the most frequently observed structural mutants in various human cancers. The substitution of residue Tyr to Cys makes the p53 DNA binding domain susceptible to solvent entry into the hydrophobic core of the domain thereby destabilizing p53, which results in loss of its tumor suppressor activity. The mutation creates a structural crevice at the region between S3/S4 and S7/S8 loops in the DNA binding domain which can be targeted by small molecules. Studies have shown that the synthetic and natural compounds could bind to this crevice and restore the structure and function of the mutant p53Y220C to the wild type. In our previous study, we have shown Curcumin could rescue the function of mutant p53Y220C in pancreatic cancer cell line BxPC-3 harboring genomic mutation. In this study, we explored six flavonoids structurally similar to Curcumin such as Apigenin, Isoliquiritigenin, Liquiritigenin, Luteolin, Methylophiopogonanone A (MPA), and Methylophiopogonanone B (MPB) to test their potency to restore p53Y220C by molecular docking, molecular dynamics simulations and cytotoxicity assay. The secondary structure analysis after the MD simulations suggested that these compounds could stabilize the mutant p53 DNA binding domain to the wild type. In the cell-based cytotoxicity studies using p53Y220C harbouring BxPC-3 cell lines, the compounds MPA and MPB showed 75% cell death at 100 µM concentration. We proposed that the flavonoids MPA and MPB have the therapeutic potential to restore p53Y220C and could be used as a combinatorial therapy to reduce the dosage burden.Communicated by Ramaswamy H. Sarma.

8.
Int J Biol Macromol ; 245: 125364, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37315665

RESUMO

Microtubule affinity regulating kinase 4 (MARK4) is known to hyperphosphorylate tau protein, which subsequently causes Alzheimer's disease (AD). MARK4 is a well-validated drug target for AD; thus, we employed its structural features to discover potential inhibitors. On the other hand, complementary and alternative medicines (CAMs) have been used for the treatment of numerous diseases with little side effects. In this regard, Bacopa monnieri extracts have been extensively used to treat neurological disorders because of their neuroprotective roles. The plant extract is used as a memory enhancer and a brain tonic. Bacopaside II is a major component of Bacopa monnieri; thus, we studied its inhibitory effects and binding affinity towards the MARK4. Bacopaside II show a considerable binding affinity for MARK4 (K = 107 M-1) and inhibited kinase activity with an IC50 value of 5.4 µM. To get atomistic insights into the binding mechanism, we performed Molecular dynamics (MD) simulation studies for 100 ns. Bacopaside II binds strongly to the active site pocket residues of MARK4 and a number of hydrogen bonds remain stable throughout the MD trajectory. Our findings provide the basis for the therapeutic implication of Bacopaside and its derivatives in MARK4-related neurodegenerative diseases, especially AD and neuroinflammation.


Assuntos
Doença de Alzheimer , Saponinas , Humanos , Doença de Alzheimer/tratamento farmacológico , Saponinas/farmacologia , Proteínas Serina-Treonina Quinases/química , Microtúbulos
9.
Biochem Biophys Rep ; 35: 101493, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37304132

RESUMO

SARS-CoV-2 causes substantial extrapulmonary manifestations in addition to pulmonary disease. Some of the major organs affected are cardiovascular, hematological and thrombotic, renal, neurological, and digestive systems. These types of muti-organ dysfunctions make it difficult and challenging for clinicians to manage and treat COVID-19 patients. The article focuses to identify potential protein biomarkers that can flag various organ systems affected in COVID-19. Publicly reposited high throughput proteomic data from human serum (HS), HEK293T/17 (HEK) and Vero E6 (VE) kidney cell culture were downloaded from ProteomeXchange consortium. The raw data was analyzed in Proteome Discoverer 2.4 to delineate the complete list of proteins in the three studies. These proteins were analyzed in Ingenuity Pathway Analysis (IPA) to associate them to various organ diseases. The shortlisted proteins were analyzed in MetaboAnalyst 5.0 to shortlist potential biomarker proteins. These were then assessed for disease-gene association in DisGeNET and validated by Protein-protein interactome (PPI) and functional enrichment studies (GO_BP, KEGG and Reactome pathways) in STRING. Protein profiling resulted in shortlisting 20 proteins in 7 organ systems. Of these 15 proteins showed at least 1.25-fold changes with a sensitivity and specificity of 70%. Association analysis further shortlisted 10 proteins with a potential association with 4 organ diseases. Validation studies established possible interacting networks and pathways affected, confirmingh the ability of 6 of these proteins to flag 4 different organ systems affected in COVID-19 disease. This study helps to establish a platform to seek protein signatures in different clinical phenotypes of COVID-19. The potential biomarker candidates that can flag organ systems involved are: (a) Vitamin K-dependent protein S and Antithrombin-III for hematological disorders; (b) Voltage-dependent anion-selective channel protein 1 for neurological disorders; (c) Filamin-A for cardiovascular disorder and, (d) Peptidyl-prolyl cis-trans isomerase A and Peptidyl-prolyl cis-trans isomerase FKBP1A for digestive disorders.

10.
Indian J Med Microbiol ; 41: 33-38, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36870746

RESUMO

BACKGROUND: Infectious diseases pose many challenges due to increasing threat of antimicrobial resistance, which necessitates continuous research to develop novel strategies for development of new molecules with antibacterial activity. In the era of computational biology there are tools and techniques available to address and solve the disease management issues in the field of clinical microbiology. The sequencing techniques, structural biology and machine learning can be implemented collectively to tackle infectious diseases e.g. for the diagnosis, epidemiological typing, pathotyping, antimicrobial resistance detection as well as the discovery of novel drugs and vaccine biomarkers. OBJECTIVES: The present review is a narrative review representing a comprehensive literature-based assessment regarding the use of whole genome sequencing, structural biology and machine learning for the diagnosis, molecular typing and antibacterial drug discovery. CONTENT: Here, we seek to present an overview of molecular and structural basis of resistance to antibiotics, while focusing on the recent bioinformatics approaches in whole genome sequencing and structural biology. The application of next generation sequencing in management of bacterial infections focusing on investigation of microbial population diversity, genotypic resistance testing and scope for the identification of targets for novel drug and vaccine candidates, has been addressed along with the use of structural biophysics and artificial intelligence.


Assuntos
Antibacterianos , Inteligência Artificial , Humanos , Farmacorresistência Bacteriana , Biologia Computacional , Genótipo
11.
Biochim Biophys Acta Rev Cancer ; 1878(3): 188883, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36972769

RESUMO

The intricate molecular interactions leading to the oncogenic pathway are the consequence of cell cycle modification controlled by a bunch of cell cycle regulatory proteins. The tumor suppressor and cell cycle regulatory proteins work in coordination to maintain a healthy cellular environment. The integrity of this cellular protein pool is perpetuated by heat shock proteins/chaperones, which assist in proper protein folding during normal and cellular stress conditions. Among these versatile groups of chaperone proteins, Hsp90 is one of the significant ATP-dependent chaperones that aid in stabilizing many tumor suppressors and cell cycle regulator protein targets. Recently, studies have revealed that in cancerous cell lines, Hsp90 stabilizes mutant p53, 'the guardian of the genome.' Hsp90 also has a significant impact on Fzr, an essential regulator of the cell cycle having an important role in the developmental process of various organisms, including Drosophila, yeast, Caenorhabditis elegans, and plants. During cell cycle progression, p53 and Fzr coordinately regulate the Anaphase Promoting Complex (APC/C) from metaphase to anaphase transition up to cell cycle exit. APC/C mediates proper centrosome function in the dividing cell. The centrosome acts as the microtubule organizing center for the correct segregation of the sister chromatids to ensure perfect cell division. This review examines the structure of Hsp90 and its co-chaperones, which work in synergy to stabilize proteins such as p53 and Fizzy-related homolog (Fzr) to synchronize the Anaphase Promoting Complex (APC/C). Dysfunction of this process activates the oncogenic pathway leading to the development of cancer. Additionally, an overview of current drugs targeting Hsp90 at various phases of clinical trials has been included.


Assuntos
Proteínas de Drosophila , Proteína Supressora de Tumor p53 , Animais , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Cdh1/genética , Proteínas Cdh1/metabolismo , Proteínas de Ciclo Celular/genética , Drosophila/genética , Drosophila/metabolismo
12.
Biochim Biophys Acta Proteins Proteom ; 1871(3): 140887, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596432

RESUMO

The short peptidoglycan recognition protein (PGRP-S) of the innate immune system recognizes the invading microbes through binding to their cell wall molecules. In order to understand the mode of binding of PGRP-S to bacterial cell wall molecules, the structure of the complex of camel PGRP-S (CPGRP-S) with hexanoic acid has been determined at 2.07 Å resolution. Previously, we had reported the structures of CPGRP-S in the native unbound state as well as in the complexed forms with the components of various bacterial cell wall molecules such as peptidoglycan (PGN), lipopolysaccharide (LPS), lipoteichoic acid (LTA), mycolic acid (MA) and other fatty acids. These structures revealed that CPGRP-S formed two homodimers which were designated as A-B and CD dimers. It also showed that the fatty acids bind to CPGRP-S in the binding site at the A-B dimer while the non-fatty acids were shown to bind at the interfaces of both A-B and CD dimers. The present structure of the complex of CPGRP-S with hexanoic acid (HA) showed that HA binds to CPGRP-S at the interface of CD dimer. HA was located in the same groove at the CD interface which was occupied by non-fatty acids such as PGN, LPS and LTA and interacts with residues from both C and D molecules. HA is firmly held in the groove with several hydrogen bonds and a number of van der Waals contacts. This is the first structure which reports the binding of a fatty acid in the cleft at the interface of CD dimer.


Assuntos
Camelus , Lipopolissacarídeos , Animais , Lipopolissacarídeos/química , Ligantes , Caproatos , Sítios de Ligação
13.
Brief Funct Genomics ; 22(2): 97-108, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35809339

RESUMO

The p53 is the master regulator of the cell known for regulating a large array of cellular processes. Inactivation of p53 by missense mutations is one of the leading causes of cancer. Some of these mutations endow p53 with selective oncogenic functions to promote tumor progression. Due to the vast array of mutations found in p53, the experimental studies showing the role of different mutant p53 as an oncogene are also expanding. In this review, we discuss the oncogenic roles of different p53 mutants at the cellular level identified by multi-omics tools. We discuss some of the therapeutic studies to tackle p53 mutants and their downstream targets identified by omics. We also highlight the future prospective and scope of further studies of downstream p53 targets by omics.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Neoplasias/genética , Mutação/genética , Oncogenes , Mutação de Sentido Incorreto
14.
Brief Funct Genomics ; 22(2): 180-194, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36064602

RESUMO

Antimicrobial resistance in bacteria poses major challenges in selection of the therapeutic regime for managing the infectious disease. There is currently an upsurge in the appearance of multiple drug resistance in bacterial pathogens and a decline in the discovery of novel antibiotics. DNA gyrase is an attractive target used for antibiotic discovery due to its vital role in bacterial DNA replication and segregation in addition to its absence in mammalian organisms. Despite the presence of successful antibiotics targeting this enzyme, there is a need to bypass the resistance against this validated drug target. Hence, drug development in DNA gyrase is a highly active research area. In addition to the conventional binding sites for the novobiocin and fluoroquinolone antibiotics, several novel sites are being exploited for drug discovery. The binding sites for novel bacterial type II topoisomerase inhibitor (NBTI), simocyclinone, YacG, Thiophene and CcdB are structurally and biochemically validated active sites, which inhibit the supercoiling activity of topoisomerases. The novel chemical moieties with varied scaffolds have been identified to target DNA gyrase. Amongst them, the NBTI constitutes the most advanced DNA gyrase inhibitor which are in phase III trial of drug development. The present review aims to classify the novel binding sites other than the conventional novobiocin and quinolone binding pocket to bypass the resistance due to mutations in the DNA gyrase enzyme. These sites can be exploited for the identification of new scaffolds for the development of novel antibacterial compounds.


Assuntos
DNA Girase , Novobiocina , Animais , DNA Girase/química , DNA Girase/genética , DNA Girase/metabolismo , Novobiocina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/uso terapêutico , Inibidores da Topoisomerase II/química , Mamíferos/metabolismo
15.
Proteins ; 91(3): 363-379, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36193975

RESUMO

The increase of antibiotic-resistant bacterial pathogens has created challenges in treatment and warranted the design of antibiotics against comparatively less exploited targets. The peptidoglycan (PG) biosynthesis delineates unique pathways for the design and development of a novel class of drugs. Mur ligases are an essential component of bacterial cell wall synthesis that play a pivotal role in PG biosynthesis to maintain internal osmotic pressure and cell shape. Inhibition of these enzymes can interrupt bacterial replication and hence, form attractive targets for drug discovery. In the present work, we focused on the PG biosynthesis pathway enzyme, UDP-N-acetylpyruvylglucosamine reductase, from Salmonella enterica serovar Typhi (stMurB). Biophysical characterization of purified StMurB was performed to gauge the molecular interactions and estimate thermodynamic stability for determination of attributes for possible therapeutic intervention. The thermal melting profile of MurB was monitored by circular dichroism and validated through differential scanning calorimetry experiment. Frequently used chemical denaturants, GdmCl and urea, were employed to study the chemical-induced denaturation of stMurB. In the search for natural compound-based inhibitors, against this important drug target, an in silico virtual screening based investigation was conducted with modeled stMurB structure. The three top hits (quercetin, berberine, and scopoletin) returned were validated for complex stability through molecular dynamics simulation. Further, fluorescence binding studies were undertaken for the selected natural compounds with stMurB alone and with NADPH bound form. The compounds scopoletin and berberine, displayed lesser binding to stMurB whereas quercetin exhibited stronger binding affinity than NADPH. This study suggests that quercetin can be evolved as an inhibitor of stMurB enzyme.


Assuntos
Berberina , Salmonella typhi , NADP , Quercetina , Escopoletina , Antibacterianos/farmacologia
16.
J Biomol Struct Dyn ; 41(5): 1904-1918, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35014594

RESUMO

Leishmania donavani is the causative agent of leishmaniasis, responsible for social and economic disruption, especially in developing countries. Lack of effective drugs with few side effects have necessitated the discovery of newer therapeutic solutions for leishmaniasis. Glycophosphatidylinositol (GPI) synthesis plays a vital role in protozoan cell membranes structural formation and antigenic modification. Hence, any disruption in its biosynthesis can prove fatal to the parasitic protozoans. N-acetylglucosamine-phosphatidylinositol de-N-acetylase (NAGP-deacetylase) is an enzyme from the GPI biosynthetic pathway that catalyzes the deacetylation of N-acetylglucosaminylphosphatidylinositol to glucosaminylphosphatidylinositol, a step essential for the proper functioning of the enzyme. In the quest for novel scaffolds as anti-leishmaniasis agents, we have executed in silico virtual screening, density function theory, molecular dynamics and MM-GBSA based energy calculations with a natural product library and a diverse library set from Chembridge database. Two compounds, 14671 and 4610, were identified at the enzyme's active site and interacted with catalytic residues, Asp43, Asp44, His41, His147, His 150, Arg80 and Arg231. Both molecules exhibited stable conformation in their protein-ligand complexes with binding free energies for compound-14671 and compound-4610 of -54 ± 4 and -50 ± 4 kcal/mol, respectively. These scaffolds can be incorporated in future synthetic determinations, focusing on developing druggable inhibitor support, increasing potency, and introducing species selectivity.Communicated by Ramaswamy H. Sarma.


Assuntos
Leishmania donovani , Acetilesterase/metabolismo , Acetilesterase/farmacologia , Fosfatidilinositóis/metabolismo , Fosfatidilinositóis/farmacologia , Acetilglucosamina/metabolismo , Acetilglucosamina/farmacologia , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular
17.
J Biomol Struct Dyn ; 41(14): 6866-6882, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35980746

RESUMO

SARS-CoV-2, the causing agent of coronavirus disease (COVID-19), first broke out in Wuhan and rapidly spread worldwide, resulting in a global health emergency. The lack of specific drugs against the coronavirus has made its spread challenging to control. The main protease (Mpro) is a key enzyme of SARS-CoV-2 used as a key target in drug discovery against the coronavirus. Medicines derived from plant phytoconstituents have been widely exploited to treat various diseases. The present study has evaluated the potential of Illicium verum (star anise) phytoconstituents against Mpro by implementing a computational approach. We performed molecular docking and molecular dynamics simulation study with a set of 60 compounds to identify their potential to inhibit the main protease (Mpro) of SARS-CoV-2. DFT study and post dynamics free energy calculations were also performed to strengthen the findings. The identified four compounds by docking study exhibited the highest potential compared to other selected phytoconstituents. Further, density functional theory (DFT) calculation, molecular dynamics simulation and post dynamics MM-GBSA energy calculation predicted Verimol-G as a potential compound, which formed stable interactions through the catalytic dyad residues. The HOMO orbital energy (-0.250038) from DFT and the post dynamics binding free energy calculation (-73.33 Kcal/mol) correlate, suggesting Verimol-G is the best inhibitor compared to the other phytoconstituents. This compound also complies with the ADME properties of drug likeliness. Thus, based on a computational study, we suggest that Verimol G may be developed as a potential inhibitor against the main protease to combat COVID-19.Communicated by Ramaswamy H. Sarma.

18.
ACS Omega ; 7(44): 39603-39618, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36385832

RESUMO

Human Aurora kinase A (AurA) has recently garnered the attention of researchers worldwide as a promising effective mitotic drug target for its involvement in cancer and related inflammatory anomalies. This study has explored the binding affinity of newly identified heteroarene-fused anthraquinone derivatives against AurA. Molecular docking analyses showed that all the heteroanthraquinone compounds bind to AurA with different affinities. Molecular dynamics simulation studies revealed that the compounds maintained relatively stable binding modes in the active site pocket while inducing minimal conformational changes in the AurA structure, interacting with key residues through several noncovalent interactions, including hydrogen bonds. Fluorescence spectroscopy and biolayer interferometry binding assays with synthesized compounds against recombinantly expressed AurA further verified their binding efficacy. Naphthoisatine 3 proved to be the best binder, with compounds anthraimidazole 5 and anthrathiophene 2 showing comparable results. Overall, this study indicates decent binding of heterocyclic derivatives of anthraquinone with the target AurA, which can further be assessed by performing enzymatic assays and cellular studies. The studies also highlight the applicability of the heteroarene-fused anthraquinone scaffold to construct selective and potent inhibitors of Aurora kinases after necessary structural modifications for the development of new anticancer drugs.

19.
Int J Biochem Mol Biol ; 13(4): 28-39, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188729

RESUMO

Peptidoglycan recognition proteins (PGRPs) are important components of the innate immune system which provide the first line of defense against invading microbes. There are four members in the family of PGRPs in animals of which PGRP-S is a common domain. It is responsible for the binding to microbial cell wall molecules. In order to understand the mode of binding of PGRP-S to the components of the bacterial cell wall, the structure of the complex of camel PGRP-S (CPGRP-S) with heptanoic acid has been determined at 2.15 Å resolution. The structure determination showed the presence of four crystallographically independent protein molecules which are designated as A, B, C, and D. These four protein molecules associate in the form of two homodimers which are represented as A-B and C-D dimers. The association between molecules A and B gives rise to a shallow cleft on the surface at one end of the dimeric interface. One molecule of heptanoic acid is observed at this binding site in the A-B dimer. The association of C and D molecules results in the formation of a long zig-zag tunnel along with the C-D interface. In the cleft at the C-D interface, three molecules of hydrogen peroxide along with other non-water solvent molecules have been observed. The analysis of the several complexes of CPGRP-S with fatty acids and non-fatty acids such as peptidoglycan, lipopolysaccharide, and lipoteichoic acid shows that the fatty acids bind at the A-B site while non-fatty acids interact through C-D interface.

20.
Comput Biol Med ; 150: 106129, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36195045

RESUMO

BACKGROUND: The genome of SARS-CoV-2, is mutating rapidly and continuously challenging the management and preventive measures adopted and recommended by healthcare agencies. The spike protein is the main antigenic site that binds to the host receptor hACE-2 and is recognised by antibodies. Hence, the mutations in this site were analysed to assess their role in differential infectivity of lineages having these mutations, rendering the characterisation of these lineages as variants of concern (VOC) and variants of interest (VOI). METHODS: In this work, we examined the genome sequence of SARS-CoV-2 VOCs and their phylogenetic relationships with the other PANGOLIN lineages. The mutational landscape of WHO characterized variants was determined and mutational diversity was compared amongst the different severity groups. We then computationally studied the structural impact of the mutations in receptor binding domain of the VOCs. The binding affinity was quantitatively determined by molecular dynamics simulations and free energy calculations. RESULTS: The mutational frequency, as well as phylogenetic distance, was maximum in the case of omicron followed by the delta variant. The maximum binding affinity was for delta variant followed by the Omicron variant. The increased binding affinity of delta strain followed by omicron as compared to other variants and wild type advocates high transmissibility and quick spread of these two variants and high severity of delta variant. CONCLUSION: This study delivers a foundation for discovering the improved binding knacks and structural features of SARS-CoV-2 variants to plan novel therapeutics and vaccine candidates against the virus.


Assuntos
COVID-19 , Humanos , Filogenia , COVID-19/genética , SARS-CoV-2/genética , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...