Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 212: 108730, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763004

RESUMO

Over the past decade, a plethora of research has illuminated the multifaceted roles of hydrogen sulfide (H2S) in plant physiology. This gaseous molecule, endowed with signaling properties, plays a pivotal role in mitigating metal-induced oxidative stress and strengthening the plant's ability to withstand harsh environmental conditions. It fulfils several functions in regulating plant development while ameliorating the adverse impacts of environmental stressors. The intricate connections among nitric oxide (NO), hydrogen peroxide (H2O2), and hydrogen sulfide in plant signaling, along with their involvement in direct chemical processes, are contributory in facilitating post-translational modifications (PTMs) of proteins that target cysteine residues. Therefore, the present review offers a comprehensive overview of sulfur metabolic pathways regulated by hydrogen sulfide, alongside the advancements in understanding its biological activities in plant growth and development. Specifically, it centres on the physiological roles of H2S in responding to environmental stressors to explore the crucial significance of different exogenously administered hydrogen sulfide donors in mitigating the toxicity associated with heavy metals (HMs). These donors are of utmost importance in facilitating the plant development, stabilization of physiological and biochemical processes, and augmentation of anti-oxidative metabolic pathways. Furthermore, the review delves into the interaction between different growth regulators and endogenous hydrogen sulfide and their contributions to mitigating metal-induced phytotoxicity.

2.
RSC Med Chem ; 15(1): 309-321, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38283216

RESUMO

Aldehyde dehydrogenase 1A1 (ALDH1A1) is an isoenzyme that catalyzes the conversion of aldehydes to acids. However, the overexpression of ALDH1A1 in a variety of malignancies is the major cause of resistance to an anti-cancer drug, cyclophosphamide (CP). CP is a prodrug that is initially converted into 4-hydroxycyclophosphamide and its tautomer aldophosphamide, in the liver. These compounds permeate into the cell and are converted as active metabolites, i.e., phosphoramide mustard (PM), through spontaneous beta-elimination. On the other hand, the conversion of CP to PM is diverted at the level of aldophosphamide by converting it into inactive carboxyphosphamide using ALDH1A1, which ultimately leads to high drug inactivation and CP resistance. Hence, in combination with our earlier work on the target of resistance, i.e., ALDH1A1, we hereby report selective ALDH1A1 inhibitors. Herein, we selected a lead molecule from our previous virtual screening and implemented scaffold hopping analysis to identify a novel scaffold that can act as an ALDH1A1 inhibitor. This results in the identification of various novel scaffolds. Among these, on the basis of synthetic feasibility, the benzimidazole scaffold was selected for the design of novel ALDH1A1 inhibitors, followed by machine learning-assisted structure-based virtual screening. Finally, the five best compounds were selected and synthesized. All synthesized compounds were evaluated using in vitro enzymatic assay against ALDH1A1, ALDH2, and ALDH3A1. The results disclosed that three molecules A1, A2, and A3 showed significant selective ALDH1A1 inhibitory potential with an IC50 value of 0.32 µM, 0.55 µM, and 1.63 µM, respectively, and none of the compounds exhibits potency towards the other two ALDH isoforms i.e. ALDH2 and ALDH3A1. Besides, the potent compounds (A1, A2, and A3) have been tested for in vitro cell line assay in combination with mafosfamide (analogue of CP) on two cell lines i.e. A549 and MIA-PaCa-2. All three compounds show significant potency to reverse mafosfamide resistance by inhibiting ALDH1A1 against these cell lines.

3.
Appl Biochem Biotechnol ; 196(2): 774-789, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37195566

RESUMO

Pteris vittata L. is a terrestrial genus growing in moist, shady forests and on hillsides. The plant has considerable ethnomedicinal importance. Investigations have been carried out on chemical profiling and antioxidant compounds from some genera of pteridophytes but studies on the biological properties of P. vittata are lacking. Therefore, the present study investigates antioxidant, antigenotoxic, and antiproliferative potential of the aqueous fraction of P. vittata (PWE). A battery of assays were carried out to assess the antioxidant potential of the PWE. SOS chromotest and DNA nicking assay were used to evaluate the antigenotoxicity of the fraction. The cytotoxic effect of PWE was analyzed using MTT and Neutral Single Cell Gel Electrophoresis comet assay. EC50 of 90.188 µg/ml, 80.13 µg/ml, 142.836 µg/ml, and 12.274 µg/ml was obtained in DPPH, superoxide anion scavenging, reducing power and lipid peroxidation assays, respectively. PWE was potent in inhibiting Fenton's reagent-induced nicking of pBR322 plasmid. The fraction significantly inhibited hydrogen peroxide (H2O2) and 4-nitroquinoline-N-oxide (4NQO) induced mutagenicity and a reduction in induction factor was found with increased PWE concentration. GI50 of 147.16 µg/ml was obtained in MTT assay in human MCF-7 breast cancer cell line. PWE induced apoptosis as confirmed from confocal microscopy studies. The protective effects can be attributed to the presence of the phytochemicals in PWE. These results will be helpful in the development of functional food characteristics, as well as unravel the benefits of pteridophytes as promoters of health.


Assuntos
Arsênio , Pteris , Poluentes do Solo , Humanos , Antioxidantes/química , Polifenóis/farmacologia , Polifenóis/análise , Polifenóis/metabolismo , Pteris/química , Pteris/metabolismo , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , China , Arsênio/metabolismo , Poluentes do Solo/metabolismo
4.
Anal Methods ; 15(38): 5010-5017, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37728434

RESUMO

A naphthalimide based chemosensor (NPG), containing 1,8-naphthalimide as a fluorophore unit and pentaethylene glycol as a binding unit, has been used for the detection of Pd2+ ions in 50% HEPES buffer-DMSO (pH 7.2) solution. The NPG showed aggregation induced emission enhancement (AIEE) properties in H2O-DMSO binary mixtures (0-90%) and the CIE plot of NPG in DMSO has x = 0.152, y = 0.102 coordinates corresponding to blue colour emission with 86% colour purity. Upon addition of Pd2+ ions, NPG showed a decrease in fluorescence intensity associated with a colour change from fluorescent blue to non-fluorescent colourless solution. The lowest limit of detection for Pd2+ ions was 75 nM. The mechanism of interaction of NPG with Pd2+ ions leads to complexation induced aggregation caused quenching (ACQ) supported by DLS, SEM and AFM studies. The NPG has been successfully utilized for (i) intracellular detection of Pd2+ ions (250 µM) in live MG-63 cells; (ii) detection of Pd2+ ions in pharmaceutical (99.74 ± 0.6%), urine (98.20 ± 2.96%) and blood serum (99.17 ± 1.84%) samples and (iii) detection of Pd2+ ions using silica coated TLC strips via a contact mode method. NPG can be used as a security ink for writing letters and alphabets for anticounterfeiting applications.

5.
Curr Top Med Chem ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37711006

RESUMO

Biologically active secondary metabolites, essential oils, and volatile compounds derived from medicinal and aromatic plants play a crucial role in promoting human health. Within the large family Asteraceae, the genus Artemisia consists of approximately 500 species. Artemisia species have a rich history in traditional medicine worldwide, offering remedies for a wide range of ailments, such as malaria, jaundice, toothache, gastrointestinal problems, wounds, inflammatory diseases, diarrhoea, menstrual pains, skin disorders, headache, and intestinal parasites. The therapeutic potential of Artemisia species is derived from a multitude of phytoconstituents, including terpenoids, phenols, flavonoids, coumarins, sesquiterpene lactones, lignans, and alkaloids that serve as active pharmaceutical ingredients (API). The remarkable antimalarial, antimicrobial, anthelmintic, antidiabetic, anti-inflammatory, anticancer, antispasmodic, antioxidative and insecticidal properties possessed by the species are attributed to these APIs. Interestingly, several commercially utilized pharmaceutical drugs, including arglabin, artemisinin, artemether, artesunate, santonin, and tarralin have also been derived from different Artemisia species. However, despite the vast medicinal potential, only a limited number of Artemisia species have been exploited commercially. Further, the available literature on traditional and pharmacological uses of Artemisia lacks comprehensive reviews. Therefore, there is an urgent need to bridge the existing knowledge gaps and provide a scientific foundation for future Artemisia research endeavours. It is in this context, the present review aims to provide a comprehensive account of the traditional uses, phytochemistry, documented biological properties and toxicity of all the species of Artemisia and offers useful insights for practitioners and researchers into underutilized species and their potential applications. This review aims to stimulate further exploration, experimentation and collaboration to fully realize the therapeutic potential of Artemisia in augmenting human health and well-being.

6.
Chem Asian J ; 18(19): e202300406, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37602577

RESUMO

Supramolecular assemblies of perylene bisimide derivative (PBI-SAH) have been developed which show 'turn-on' detection of chlorpyrifos in aqueous media, apple residue and blood serum. Differently from the already reported fluorescent probes for the detection of CPF, PBI-SAH assemblies also show affinity for acetylcholinesterase (AChE) which endow the PBI-SAH molecules with mixed inhibitory potential to restrict the AChE catalysed hydrolysis of acetylthiocholine (ATCh) in MG-63 cell lines (in vitro) and in mice (in vivo). The molecular docking studies support the inhibitory activity of PBI-SAH assemblies and their potential to act as safe insecticide with high benefit to harm ratio. The insecticidal potential of PBI-SAH derivative has been examined against Spodoptera litura (S. litura) and these studies demonstrate its excellent insecticidal activity (100 % mortality in nineteen days). To the best of our knowledge, this is the first report regarding development of PBI-SAH assemblies which not only detect chlorpyrifos but also mimic AChE inhibitory activity of CPF to show promising aptitude as safe insecticide.

7.
Int J Biol Macromol ; 242(Pt 1): 124749, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37160174

RESUMO

Cyclophosphamide (CP) is one of the most widely used anticancer drugs for various malignancies. However, its long-term use leads to ALDH1A1-mediated inactivation and subsequent resistance which necessitates the development of potential ALDH1A1 inhibitors. Currently, ALDH1A1 inhibitors from different chemical classes have been reported, but these failed to reach the market due to safety and efficacy problems. Developing a new treatment from the ground requires a huge amount of time, effort, and money, therefore it is worthwhile to improve CP efficacy by proposing better adjuvants as ALDH1A1 inhibitors. Herein, the database constituting the FDA-approved drugs with well-established safety and toxicity profiles was screened through already reported machine learning models by our research group. This model is validated for discriminating the ALDH1A1 inhibitors and non-inhibitors. Virtual screening protocol (VS) from this model identified four FDA-approved drugs, raloxifene, bazedoxifene, avanafil, and betrixaban as selective ALDH1A1 inhibitors. The molecular docking, dynamics, and water swap analysis also suggested these drugs to be promising ALDH1A1 inhibitors which were further validated for their CP resistance reversal potential by in-vitro analysis. The in-vitro enzymatic assay results indicated that raloxifene and bazedoxifene selectively inhibited the ALDH1A1 enzyme with IC50 values of 2.35 and 4.41 µM respectively, whereas IC50 values of both the drugs against ALDH2 and ALDH3A1 was >100 µM. Additional in-vitro studies with well-reported ALDH1A1 overexpressing A549 and MIA paCa-2 cell lines suggested that mafosfamide sensitivity was further ameliorated by the combination of both raloxifene and bazedoxifene. Collectively, in-silico and in-vitro studies indicate raloxifene and bazedoxifene act as promising adjuvants with CP that may improve the quality of treatment for cancer patients with minimal toxicities.


Assuntos
Neoplasias , Cloridrato de Raloxifeno , Humanos , Cloridrato de Raloxifeno/farmacologia , Simulação de Acoplamento Molecular , Reposicionamento de Medicamentos , Ciclofosfamida/farmacologia , Neoplasias/tratamento farmacológico , Aldeído-Desidrogenase Mitocondrial , Família Aldeído Desidrogenase 1 , Retinal Desidrogenase
8.
Anal Methods ; 15(19): 2391-2398, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37139593

RESUMO

In this report, we present our results on the recognition of multiple analytes using trisubstituted PDI-based chemosensors DNP and DNB in 50% HEPES buffered-CH3CN solution. Upon the addition of Hg2+, DNB showed a decrease and increase in absorbance intensity at 560 and 590 nm, respectively, with a detection limit of 7.17 µM and bleaching of the violet color (de-butynoxy). Similarly, the addition of Fe2+ or H2S to the solution of DNP or DNB resulted in ratiometric changes (A688nm/A560nm) with respective detection limits of 185 nM and 27.6 nM for Fe2+, respectively, and a color change from violet to green. However, the addition of >37 µM H2S caused a decrease in absorbance at 688 nm with a concomitant blue shift to 634 nm. Upon the addition of dopamine, the DNP + Fe2+ assay showed ratiometric (A560nm/A688nm) changes within 10 s along with a color change from green to violet. Moreover, DNP has been successfully used for the exogenous detection of Fe2+ in A549 cells. Further, the multiple outputs observed with DNP in the presence of H2S have been used to construct NOR, XOR, INH and 4-to-2 encoder logic gates and circuits.


Assuntos
Mercúrio , Perileno , Corantes Fluorescentes , Dopamina
9.
Naunyn Schmiedebergs Arch Pharmacol ; 396(9): 1867-1878, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37010571

RESUMO

The Cucurbitaceae family produces a class of secondary metabolites known as cucurbitacins. The eight cucurbitacin subunits are cucurbitacin B, D, E, I, IIa, L glucoside, Q, and R with the most significant anticancer activity. They are reported to inhibit cell proliferation, invasion, and migration; induce apoptosis; and encourage cell cycle arrest, as some of their modes of action. The JAK-STAT3, Wnt, PI3K/Akt, and MAPK signaling pathways, which are essential for the survival and apoptosis of cancer cells, have also been shown to be suppressed by cucurbitacins. The goal of the current study is to summarize potential molecular targets that cucurbitacins could inhibit in order to suppress various malignant processes. The review is noteworthy since it presents all putative molecular targets for cucurbitacins in cancer on a single podium.


Assuntos
Neoplasias , Triterpenos , Humanos , Cucurbitacinas/farmacologia , Cucurbitacinas/uso terapêutico , Fosfatidilinositol 3-Quinases , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Apoptose , Proliferação de Células
10.
J Toxicol Environ Health A ; 86(9): 296-312, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36919564

RESUMO

Cassia fistula L. is well known for its traditional medicinal properties as an anti-inflammatory, hepatoprotective, antifungal, antibacterial, antimutagenic, and wound healing agent. The aim of the present study was to determine antioxidant, genoprotective, and cytotoxic potential of different fractions of C. fistula bark including hexane (CaMH), chloroform (CaMC), ethyl acetate (CaME), and methanol (CaMM). Among all the fractions studied, CaMM exhibited maximal radical scavenging activity in antioxidant DPPH assay, Superoxide anion radical scavenging assay and nitric oxide radical scavenging assay displayed an IC50 value of 18.95, 29.41, and 13.38 µg/ml, respectively. CaMM fraction possessed the highest phenolic (130.37 mg gallic acid equivalent/g dry weight of extract) and flavonoid (36.96 mg rutin equivalent/g dry weight of fraction) content. Data demonstrated significant positive correlation between polyphenol levels and radical scavenging activity. Single cell gel electrophoresis (Comet assay) exhibited genoprotective potential of C. fistula bark fractions against DNA damage induced by hydrogen peroxide (H2O2) in human lymphocytes. CaMM fraction displayed highest protective ability against H2O2 induced-toxicity as evidenced by significant decrease in % tail DNA content from 30 to 7% at highest concentration (200 µg/ml). CaMM was found to be rich in catechin, gallic acid, chlorogenic acid, and kaempferol. The phenolic content and antioxidant ability of the fractions was markedly negatively correlated with H2O2- induced DNA damage in human lymphocytes. Cytotoxic potential was evaluated against dermal epidermoid carcinoma (A431), pancreatic (MIA PaCa-2) and brain glioblastoma (LN-18) cancer cell lines using MTT assay. Results showed that C. fistula bark fractions possessed highest toxicity against the skin carcinoma cells. CaMM fraction reduced over 50% cell growth at the concentration of 76.72 µg/ml in A431 cells. These findings suggest that fractions of C. fistula bark exhibit potential to be considered as therapeutic agents in various carcinomas.


Assuntos
Antineoplásicos , Cassia , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Metanol , Casca de Planta/química , Peróxido de Hidrogênio , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Estresse Oxidativo , Fenóis/análise
11.
ACS Omega ; 8(2): 2639-2647, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687064

RESUMO

The limitations of prevailing probes for the detection of human serum albumin (HSA) and HSO3 - make it challenging to apprehend the cooperative effect of both HSA and HSO3 - in biological systems. Herein, we present a multi-responsive fluorescent probe MGTP, which distinguishes HSA from bovine serum albumin (BSA) through an ∼104-fold fluorescence enhancement at an emission maximum of 595 nm with HSA and only an ∼10-fold increase at an emission maximum of 615 nm with a shoulder at 680 nm with BSA. The absorbance spectrum of MGTP also discriminates HSA and BSA with the respective absorption maxima at 543 nm and at 580 nm. MGTP in the confined space of HSA or BSA undergoes instantaneous conjugate addition of HSO3 - and results in a ratiometric change in fluorescence intensity with diminishing of red fluorescence (600 nm) and emergence of green fluorescence (515 nm). MGTP in the absence of SAs does not react with HSO3 - in phosphate-buffered saline buffer and reacts sluggishly in the dimethyl sulfoxide-water 1:1 mixture. The limit of detection values for the detection of HSA and HSO3 - are 4 and 6.88 nM, respectively. The drug binding studies reveal that MGTP preferably confines itself at the bilirubin site of HSA. In MCF-7 cancer cells, MGTP is localized into mitochondria and reveals both exogenous and endogenous visualization of HSO3 - through a change in fluorescence from the red to green channel.

12.
Drug Chem Toxicol ; : 1-10, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36594462

RESUMO

7-Methylxanthine (7-MX, CAS No. 552-62-5, purity 99.46%) is the first orally administered drug candidate, which showed anti-myopic activity in different pre-clinical studies. In the present study, we investigated the in-vivo genotoxic and mutagenic toxicity of 7-MX in Wistar rats using comet/single-cell gel electrophoresis, chromosomal aberration and micronucleus assays after oral administration. For the single-dose study (72 h), two doses of 7-MX 300 and 2000 mg/kg body weight were selected. For a repeated dose 28 d study, three doses (250, 500, and 1000 mg/kg) of 7-MX were selected. The doses were administered via oral gavage in the suspension form. Blood and major vital organs such as bone marrow, lung and liver were used to perform comet/single cell gel electrophoresis, chromosomal aberration, and micronucleus assays. The in-vitro Ames test was performed on TA98 and TA100 strains. In the chromosomal aberration study, a non-significant increase in deformities such as stickiness, ring chromosome, and endoreduplication was observed in bone marrow cells of 7-MX treated groups. These chromosomal alterations were observed upon treatment with doses of 2000 mg/kg single dose for 72 h and 1000 mg/kg repeated dose for 28 d. At a dose of 500 mg/kg, DNA damage in terms of tail length, tail moment, % tail DNA and the olive tail moment was also found to be non-significant in 7-MX treated groups. The Ames test showed the non-mutagenic nature of 7-MX in both strains of TA98 and TA100 of Salmonella typhimurium with or without metabolic activation. Thus, the present work is interesting in view of the non- genotoxicity and non-mutagenicity of repeated doses of 7-MX.

13.
Molecules ; 27(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36431779

RESUMO

Here, in the present work, a new hydroxybenzothiazole derivative (HBT 2) with AIE+ESIPT features was synthesized by Suzuki-Miyora coupling of HBT 1 with 4-formylphenylboronic acid. The AIE and ESIPT features were confirmed by optical, microscopic (AFM) and dynamic light scattering (DLS) techniques. The yellow fluorescent aggregates of HBT 2 can specifically detect Cu2+/Cu+ ions with limits of detection as low as 250 nM and 69 nM. The Job's plot revealed the formation of a 1:1 complex. The Cu2+ complexation was further confirmed by optical, NMR, AFM and DLS techniques. HBT 2 was also used for the detection of Cu2+ ions in real water samples collected from different regions of Punjab. HBT 2 was successfully used for the bio-imaging of Cu2+ ions in live A549 and its anticancer activity was checked on different cancer cell lines, such as MG63, and HeLa, and normal cell lines such as L929. We successfully utilized HBT 2 to develop security labels for anticounterfeiting applications.


Assuntos
Corantes Fluorescentes , Humanos , Corantes Fluorescentes/química , Células HeLa
14.
Explor Target Antitumor Ther ; 3(5): 719-733, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338520

RESUMO

Onosma (O.) is a genus of perennial flowering plants in the family Boraginaceae with approximately 250 species widely dispersed in temperate, tropical, and subtropical areas. It is traditionally used to treat rheumatism, fever, asthma, stomach irritation, and inflammatory ailments. The bioactive constituents present in the genus O. include benzoquinones, naphthazarins, alkaloids, phenolic, naphthoquinones, and flavonoids whereas shikonins and onosmins are the most significant. The review compiled contemporary research on O. L., including its distribution, morphology, traditional applications, phytochemistry, ethnopharmacology, and toxicology. This review also highlights a few critical challenges and possible future directions for O. L. research. Modern research has demonstrated a wide range of pharmacological effects of different species of O. L., including anti-diabetic, anticancer, anti-inflammatory, and cardiovascular protective. However, the studies on the O. genus are still not fully explored, therefore, researchers need to discover novel products with their toxicity studies, molecular mechanism, and associated side effects. Future exploration of potent constituents from this genus and clinical trials are required to explore its pharmacological importance.

15.
Bioorg Chem ; 129: 106169, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36174442

RESUMO

The F- ion and viscosity both affect the physiological state of mitochondria and to the best of our knowledge no fluorescent probe is reported for the dual detection of mitochondrial viscosity and F- ion through different signals. DMAS-Si is weakly red fluorescent due to free intramolecular rotation between dimethylaminophenyl and pyridinium moieties and PET from silyloxy to the pyridinium moiety. In viscous medium (glycerol 90 %), the rotation is restricted and 18-fold increase in red-fluorescence (λem 637 nm) is observed. On reaction with F- ion, the desilylations followed by release of quinone-methide from DMAS-Si gives intense green fluorescence (λem 515 nm) due to formation of DMAS. DMAS-Si can detect as low as 50 nM F-. DMAS-Si shows good permeability to HeLa cells and preferably targets mitochondria. It has been used for imaging of increased viscosity in mitochondria of HeLa cells in the presence of nystatin through red fluorescence and exogenous F- ion by appearance of green fluorescence.


Assuntos
Corantes Fluorescentes , Mitocôndrias , Humanos , Viscosidade , Células HeLa , Imagem Óptica/métodos
16.
Molecules ; 27(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35684419

RESUMO

Onosma bracteata Wall. is an important medicinal and immunity-enhancing herbs. This plant is commonly used in the preparation of traditional Ayurvedic drugs to treat numerous diseases. Inspired by the medicinal properties of this plant, the present study aimed to investigate the antiproliferative potential and the primary molecular mechanisms of the apoptotic induction against human osteosarcoma (MG-63) cells. Among all the fractions isolated from O. bracteata, ethyl acetate fraction (Obea) showed good antioxidant activity in superoxide radical scavenging assay and lipid peroxidation assay with an EC50 value of 95.12 and 80.67 µg/mL, respectively. Silica gel column chromatography of ethyl acetate (Obea) fraction of O. bracteata yielded a pure compound, which was characterized by NMR, FTIR, and HR-MS analysis and was identified as 1,2-benzene dicarboxylic acid, bis (2-methyl propyl) ester (BDCe fraction). BDCe fraction was evaluated for the antiproliferative potential against human osteosarcoma MG-63, human neuroblastoma IMR-32, and human lung carcinoma A549 cell lines by MTT assay and exhibited GI50 values of 37.53 µM, 56.05 µM, and 47.12 µM, respectively. In MG-63 cells, the BDCe fraction increased the level of ROS and simultaneously decreased the mitochondria membrane potential (MMP) potential by arresting cells at the G0/G1 phase, suggesting the initiation of apoptosis. Western blotting analysis revealed the upregulation of p53, caspase3, and caspase9 while the expressions of p-NF-κB, p-Akt and Bcl-xl were decreased. RT-qPCR studies also showed upregulation in the expression of p53 and caspase3 and downregulation in the expression of CDK2, Bcl-2 and Cyclin E genes. Molecular docking analysis displayed the interaction between BDCe fraction with p53 (-151.13 kcal/mol) and CDK1 (-133.96 kcal/mol). The results of the present work suggest that the BDCe fraction has chemopreventive properties against osteosarcoma (MG-63) cells through the induction of cell cycle arrest and apoptosis via Akt/NF-κB/p53 pathways. This study contributes to the understanding of the utilization of BDCe fraction in osteosarcoma treatment.


Assuntos
Neoplasias Ósseas , Boraginaceae , Osteossarcoma , Apoptose , Boraginaceae/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Ésteres , Humanos , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Osteossarcoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/metabolismo
17.
AAPS PharmSciTech ; 23(5): 128, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484413

RESUMO

The present study aims to develop carboplatin injectable microspheres using spray-drying technology. The optimized powdered microspheres (MS-19-ST2) were morphologically spherical, with a 1.795 µm particle size and good micromeritic properties. Under normal temperature conditions, the MS-19-ST2 formulation exhibited a sustained release behaviour following first-order drug release kinetics with no compatibility issues with aluminium syringes. Furthermore, MS-19-ST2 formulation outperformed its commercial counterpart in terms of in vivo pharmaco-kinetics and -dynamics (MRT-13.9 ± 0.9 h, T1/2-8.2 ± 0.3 h, tumour inhibition-74.5%). Additionally, the MS-19-ST2 formulation was much safer to use than its commercial counterpart, as observed from the results of ex vivo (haemolytic, MTT, and cell apoptosis assays) and in vivo (14-day acute and 28-day sub-acute) toxicity studies. The above results confirm the MS-19-ST2 formulation as a good candidate to commercialize carboplatin in a powdered microsphere form (stable for 24 h after reconstitution) with improved pharmacokinetics, therapeutic, and toxicity profile.


Assuntos
Proteína 1 Semelhante a Receptor de Interleucina-1 , Tecnologia , Carboplatina , Liberação Controlada de Fármacos , Microesferas
18.
Environ Sci Pollut Res Int ; 29(4): 6317-6333, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34453252

RESUMO

The current study was designed to assess the in vivo hepatoprotective properties of trans-Anethole, which is a principal aromatic component of star anise. The hepatoprotective effects of trans-Anethole were evaluated at three doses [40, 80, and 160 mg/kg body weight (b.wt.)] against carbon tetrachloride (CCl4)-induced hepatic damage in male Wistar rats for 4 weeks. Forty-two male Wistar rats were equally divided into seven groups; the control (group I) received only distilled water. Rats of group II received CCl4 (1 ml/kg b.wt.) in a 1:1 ratio of CCl4 and olive oil via intraperitoneal doses, while rats of group III received silymarin (50 mg/kg b.wt.), followed by CCl4 intraperitoneal doses, 3 days in a week. Rats of group IV received trans-anethole (160 mg/kg b.wt.) for 28 days as a negative control. Trans-anethole at the doses of 40, 80, and 160 mg/kg b.wt. was administered to groups V, VI, and VII, respectively, for 28 days, followed by CCl4 (i.p). Results showed that CCl4 treatment (group II) elevated the levels of different serum markers like aspartate aminotransferase (AST) by 4.74 fold, alanine aminotransferase (ALT) by 3.47 fold, aspartate alkaline phosphatase (ALP) by 3.55 fold, direct bilirubin by 3.48 fold, and total bilirubin by 2.38 fold in contrast to control. Furthermore, it was found that the decreased levels of liver antioxidant enzymes viz. catalase (CAT) and glutathione reductase (GR) were significantly modulated by the pre-administration of rats with different doses (40, 80, and 160 mg/kg b.wt.) of trans-anethole. Furthermore, pre-treatment of trans-anethole reduced the level of phase I enzymes and elevated the level of phase II detoxifying enzymes. Histopathological investigations showed that the treatment with trans-anethole was effective in ameliorating CCl4-induced liver injury and restored the normal hepatic architecture. Moreover, trans-anethole restored p53 and cyclin D levels in liver tissue relative to group II. Western blot analysis revealed that the trans-anethole treatment downregulated the expression of Bax and caspase-3 while upregulated the expression of Bcl-xL. Collectively, the findings of the study showed the strong efficacy of trans-anethole in ameliorating the hepatic damage caused by CCl4 through the modulation of antioxidants and xenobiotic-metabolizing enzymes.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Derivados de Alilbenzenos , Animais , Anisóis , Antioxidantes/metabolismo , Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fígado/metabolismo , Masculino , Estresse Oxidativo , Extratos Vegetais/metabolismo , Ratos , Ratos Wistar
19.
Chem Asian J ; 17(4): e202101219, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-34942037

RESUMO

ESIPT active PBI-keto/enol assemblies have been developed which show 'on-on' optical response towards 2,6-dichloro-4-nitroaniline (DCN) due to a combined ESIPT-AIEE phenomenon with a detection limit of 1.65 nM. The potential of PBI-keto/enol assemblies to detect DCN has also been explored in grape juice/grape residue and soil for six consecutive days. Further, the biological applications of PBI-keto/enol assemblies to detect DCN in blood serum, in MG-63 cell lines and their ability to restrict the DCN-induced cell death have been demonstrated.


Assuntos
Química , Compostos de Anilina
20.
J Mater Chem B ; 10(1): 107-119, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34889936

RESUMO

Positively charged amphiphiles hold great significance in supramolecular chemistry due to their good solubility, and physiochemical and molecular recognition properties. Herein, we report the synthesis, characterization and molecular recognition properties of the dicationic amphiphile based on perylene diimide-tyrosine alkyl amide amine (PDI 3). PDI 3 showed the formation of a nanoring architecture in the self-assembled aggregated state (90% H2O-DMSO mixture) as observed by SEM and TEM studies. The diameter of the nanoring is around 30-50 nm with a height varying from 1 to 2 nm. The self-assembled aggregates of PDI 3 are very sensitive towards nucleoside triphosphates. Upon addition of ATP, PDI 3 showed a decrease in the absorbance and emission intensity at 535 and 580 nm (due to the monomer state), respectively. The lowest detection limit for ATP is 10.8 nM (UV) and 3.06 nM (FI). Upon interaction of ATP with PDI 3, the nanoring morphology transformed into a spherical structure. These changes could be attributed to the formation of ionic self-assembled aggregates between dicationic PDI 3 and negatively charged ATP via electrostatic and H-bonding interactions. The complexation mechanism of PDI 3 and ATP was confirmed by optical, NMR, Job's plot, DLS, SEM and AFM studies. PDI 3 displays low cytotoxicity toward MG-63 cells and can be successfully used for the detection of exogenous and endogenous ATP. The resulting PDI 3 + ATP complex is successfully used as a 'turn-on' biochemical assay for monitoring phosphorylation of glucose.


Assuntos
Trifosfato de Adenosina/análise , Materiais Biocompatíveis/química , Glucose/análise , Imidas/química , Nanopartículas/química , Perileno/análogos & derivados , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Glucose/metabolismo , Humanos , Imidas/síntese química , Imidas/farmacologia , Teste de Materiais , Tamanho da Partícula , Perileno/síntese química , Perileno/química , Perileno/farmacologia , Fosforilação , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...