Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Healthcare (Basel) ; 11(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37893836

RESUMO

Alzheimer's disease is a common neurological disorder and mental disability that causes memory loss and cognitive decline, presenting a major challenge to public health due to its impact on millions of individuals worldwide. It is crucial to diagnose and treat Alzheimer's in a timely manner to improve the quality of life of both patients and caregivers. In the recent past, machine learning techniques have showed potential in detecting Alzheimer's disease by examining neuroimaging data, especially Magnetic Resonance Imaging (MRI). This research proposes an attention-based mechanism that employs the vision transformer approach to detect Alzheimer's using MRI images. The presented technique applies preprocessing to the MRI images and forwards them to a vision transformer network for classification. This network is trained on the publicly available Kaggle dataset, and it illustrated impressive results with an accuracy of 99.06%, precision of 99.06%, recall of 99.14%, and F1-score of 99.1%. Furthermore, a comparative study is also conducted to evaluate the performance of the proposed method against various state-of-the-art techniques on diverse datasets. The proposed method demonstrated superior performance, outperforming other published methods when applied to the Kaggle dataset.

2.
Healthcare (Basel) ; 11(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37830690

RESUMO

Motor imagery, an intricate cognitive procedure encompassing the mental simulation of motor actions, has surfaced as a potent strategy within the neuro-rehabilitation domain. It presents a non-invasive, economically viable method for facilitating individuals with disabilities in enhancing their motor functionality and regaining self-sufficiency. This manuscript delivers an exhaustive analysis of the significance of motor imagery in augmenting functional rehabilitation for individuals afflicted with physical impairments. It investigates the fundamental mechanisms governing motor imagery, its applications across diverse disability conditions, and the prospective advantages it renders. Moreover, this document addresses the prevailing obstacles and prospective trajectories in this sector, accentuating the necessity for continued investigation and the invention of cutting-edge technologies that optimize the potentiality of motor imagery in aiding disabled persons.

3.
Diagnostics (Basel) ; 13(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37189603

RESUMO

Monkeypox (MPX) is a disease caused by monkeypox virus (MPXV). It is a contagious disease and has associated symptoms of skin lesions, rashes, fever, and respiratory distress lymph swelling along with numerous neurological distresses. This can be a deadly disease, and the latest outbreak of it has shown its spread to Europe, Australia, the United States, and Africa. Typically, diagnosis of MPX is performed through PCR, by taking a sample of the skin lesion. This procedure is risky for medical staff, as during sample collection, transmission and testing, they can be exposed to MPXV, and this infectious disease can be transferred to medical staff. In the current era, cutting-edge technologies such as IoT and artificial intelligence (AI) have made the diagnostics process smart and secure. IoT devices such as wearables and sensors permit seamless data collection while AI techniques utilize the data in disease diagnosis. Keeping in view the importance of these cutting-edge technologies, this paper presents a non-invasive, non-contact, computer-vision-based method for diagnosis of MPX by analyzing skin lesion images that are more smart and secure compared to traditional methods of diagnosis. The proposed methodology employs deep learning techniques to classify skin lesions as MPXV positive or not. Two datasets, the Kaggle Monkeypox Skin Lesion Dataset (MSLD) and the Monkeypox Skin Image Dataset (MSID), are used for evaluating the proposed methodology. The results on multiple deep learning models were evaluated using sensitivity, specificity and balanced accuracy. The proposed method has yielded highly promising results, demonstrating its potential for wide-scale deployment in detecting monkeypox. This smart and cost-effective solution can be effectively utilized in underprivileged areas where laboratory infrastructure may be lacking.

4.
World J Clin Cases ; 11(1): 84-91, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36687200

RESUMO

Diabetic wound takes longer time to heal due to micro and macro-vascular ailment. This longer healing time can lead to infections and other health complications. Foot ulcers are one of the most common diabetic wounds. These are one of the leading cause of amputations. Medical science is continuously striving for improving quality of human life. A recent trend of amalgamation of knowledge, efforts and technological advancement of medical science experts and artificial intelligence researchers, has made tremendous success in diagnosis, prognosis and treatment of a variety of diseases. Diabetic wounds are no exception, as artificial intelligence experts are putting their research efforts to apply latest technological advancements in the field to help medical care personnel to deal with diabetic wounds in more effective manner. The presented study reviews the diagnostic and treatment research under the umbrella of Artificial Intelligence and computational science, for diabetic wound healing. Framework for diabetic wound assessment using artificial intelligence is presented. Moreover, this review is focused on existing and potential contribution of artificial intelligence to improve medical services for diabetic wound patients. The article also discusses the future directions for the betterment of the field that can lead to facilitate both, clinician and patients.

5.
Curr Med Imaging ; 16(5): 513-533, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32484086

RESUMO

BACKGROUND: Automated intelligent systems for unbiased diagnosis are primary requirement for the pigment lesion analysis. It has gained the attention of researchers in the last few decades. These systems involve multiple phases such as pre-processing, feature extraction, segmentation, classification and post processing. It is crucial to accurately localize and segment the skin lesion. It is observed that recent enhancements in machine learning algorithms and dermoscopic techniques reduced the misclassification rate therefore, the focus towards computer aided systems increased exponentially in recent years. Computer aided diagnostic systems are reliable source for dermatologists to analyze the type of cancer, but it is widely acknowledged that even higher accuracy is needed for computer aided diagnostic systems to be adopted practically in the diagnostic process of life threatening diseases. INTRODUCTION: Skin cancer is one of the most threatening cancers. It occurs by the abnormal multiplication of cells. The core three types of skin cells are: Squamous, Basal and Melanocytes. There are two wide classes of skin cancer; Melanocytic and non-Melanocytic. It is difficult to differentiate between benign and malignant melanoma, therefore dermatologists sometimes misclassify the benign and malignant melanoma. Melanoma is estimated as 19th most frequent cancer, it is riskier than the Basel and Squamous carcinoma because it rapidly spreads throughout the body. Hence, to lower the death risk, it is critical to diagnose the correct type of cancer in early rudimentary phases. It can occur on any part of body, but it has higher probability to occur on chest, back and legs. METHODS: The paper presents a review of segmentation and classification techniques for skin lesion detection. Dermoscopy and its features are discussed briefly. After that Image pre-processing techniques are described. A thorough review of segmentation and classification phases of skin lesion detection using deep learning techniques is presented Literature is discussed and a comparative analysis of discussed methods is presented. CONCLUSION: In this paper, we have presented the survey of more than 100 papers and comparative analysis of state of the art techniques, model and methodologies. Malignant melanoma is one of the most threating and deadliest cancers. Since the last few decades, researchers are putting extra attention and effort in accurate diagnosis of melanoma. The main challenges of dermoscopic skin lesion images are: low contrasts, multiple lesions, irregular and fuzzy borders, blood vessels, regression, hairs, bubbles, variegated coloring and other kinds of distortions. The lack of large training dataset makes these problems even more challenging. Due to recent advancement in the paradigm of deep learning, and specially the outstanding performance in medical imaging, it has become important to review the deep learning algorithms performance in skin lesion segmentation. Here, we have discussed the results of different techniques on the basis of different evaluation parameters such as Jaccard coefficient, sensitivity, specificity and accuracy. And the paper listed down the major achievements in this domain with the detailed discussion of the techniques. In future, it is expected to improve results by utilizing the capabilities of deep learning frameworks with other pre and post processing techniques so reliable and accurate diagnostic systems can be built.


Assuntos
Aprendizado Profundo , Diagnóstico por Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Neoplasias Cutâneas/diagnóstico por imagem , Humanos , Pele/diagnóstico por imagem
6.
Sensors (Basel) ; 18(11)2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445801

RESUMO

Recognition of human actions form videos has been an active area of research because it has applications in various domains. The results of work in this field are used in video surveillance, automatic video labeling and human-computer interaction, among others. Any advancements in this field are tied to advances in the interrelated fields of object recognition, spatio- temporal video analysis and semantic segmentation. Activity recognition is a challenging task since it faces many problems such as occlusion, view point variation, background differences and clutter and illumination variations. Scientific achievements in the field have been numerous and rapid as the applications are far reaching. In this survey, we cover the growth of the field from the earliest solutions, where handcrafted features were used, to later deep learning approaches that use millions of images and videos to learn features automatically. By this discussion, we intend to highlight the major breakthroughs and the directions the future research might take while benefiting from the state-of-the-art methods.


Assuntos
Aprendizado Profundo , Atividades Humanas , Percepção Visual , Humanos , Análise Espaço-Temporal , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...