Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 27(6): e14460, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877759

RESUMO

Mast seeding is a well-documented phenomenon across diverse forest ecosystems. While its effect on aboveground food webs has been thoroughly studied, how it impacts the soil fungi that drive soil carbon and nutrient cycling has not yet been explored. To evaluate the relationship between mast seeding and fungal resource availability, we paired a Swiss 29-year fungal sporocarp census with contemporaneous seed production for European beech (Fagus sylvatica L.). On average, mast seeding was associated with a 55% reduction in sporocarp production and a compositional community shift towards drought-tolerant taxa across both ectomycorrhizal and saprotrophic guilds. Among ectomycorrhizal fungi, traits associated with carbon cost did not explain species' sensitivity to seed production. Together, our results support a novel hypothesis that mast seeding limits annual resource availability and reproductive investment in soil fungi, creating an ecosystem 'rhythm' to forest processes that is synchronized above- and belowground.


Assuntos
Fagus , Micorrizas , Fagus/microbiologia , Micorrizas/fisiologia , Biodiversidade , Microbiologia do Solo , Sementes/microbiologia , Suíça , Fungos/fisiologia , Micobioma
2.
Cell Genom ; : 100586, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38942024

RESUMO

Mycena s.s. is a ubiquitous mushroom genus whose members degrade multiple dead plant substrates and opportunistically invade living plant roots. Having sequenced the nuclear genomes of 24 Mycena species, we find them to defy the expected patterns for fungi based on both their traditionally perceived saprotrophic ecology and substrate specializations. Mycena displayed massive genome expansions overall affecting all gene families, driven by novel gene family emergence, gene duplications, enlarged secretomes encoding polysaccharide degradation enzymes, transposable element (TE) proliferation, and horizontal gene transfers. Mainly due to TE proliferation, Arctic Mycena species display genomes of up to 502 Mbp (2-8× the temperate Mycena), the largest among mushroom-forming Agaricomycetes, indicating a possible evolutionary convergence to genomic expansions sometimes seen in Arctic plants. Overall, Mycena show highly unusual, varied mosaic-like genomic structures adaptable to multiple lifestyles, providing genomic illustration for the growing realization that fungal niche adaptations can be far more fluid than traditionally believed.

3.
New Phytol ; 242(6): 2775-2786, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38567688

RESUMO

Unlike 'white rot' (WR) wood-decomposing fungi that remove lignin to access cellulosic sugars, 'brown rot' (BR) fungi selectively extract sugars and leave lignin behind. The relative frequency and distribution of these fungal types (decay modes) have not been thoroughly assessed at a global scale; thus, the fate of one-third of Earth's aboveground carbon, wood lignin, remains unclear. Using c. 1.5 million fungal sporocarp and c. 30 million tree records from publicly accessible databases, we mapped and compared decay mode and tree type (conifer vs angiosperm) distributions. Additionally, we mined fungal record metadata to assess substrate specificity per decay mode. The global average for BR fungi proportion (BR/(BR + WR records)) was 13% and geographic variation was positively correlated (R2 = 0.45) with conifer trees proportion (conifer/(conifer + angiosperm records)). Most BR species (61%) were conifer, rather than angiosperm (22%), specialists. The reverse was true for WR (conifer: 19%; angiosperm: 62%). Global BR proportion patterns were predicted with greater accuracy using the relative distributions of individual tree species (R2 = 0.82), rather than tree type. Fungal decay mode distributions can be explained by tree type and, more importantly, tree species distributions, which our data suggest is due to strong substrate specificities.


Assuntos
Ecossistema , Traqueófitas , Traqueófitas/microbiologia , Fungos/fisiologia , Madeira/microbiologia , Especificidade da Espécie , Lignina/metabolismo , Geografia , Árvores/microbiologia
4.
Ecol Lett ; 26(9): 1523-1534, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37330626

RESUMO

Despite host-fungal symbiotic interactions being ubiquitous in all ecosystems, understanding how symbiosis has shaped the ecology and evolution of fungal spores that are involved in dispersal and colonization of their hosts has been ignored in life-history studies. We assembled a spore morphology database covering over 26,000 species of free-living to symbiotic fungi of plants, insects and humans and found more than eight orders of variation in spore size. Evolutionary transitions in symbiotic status correlated with shifts in spore size, but the strength of this effect varied widely among phyla. Symbiotic status explained more variation than climatic variables in the current distribution of spore sizes of plant-associated fungi at a global scale while the dispersal potential of their spores is more restricted compared to free-living fungi. Our work advances life-history theory by highlighting how the interaction between symbiosis and offspring morphology shapes the reproductive and dispersal strategies among living forms.


Assuntos
Micorrizas , Simbiose , Animais , Humanos , Ecossistema , Fungos , Insetos , Plantas , Esporos Fúngicos
5.
Environ Microbiol ; 25(10): 1875-1893, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37188366

RESUMO

Traditional strict separation of fungi into ecological niches as mutualist, parasite or saprotroph is increasingly called into question. Sequences of assumed saprotrophs have been amplified from plant root interiors, and several saprotrophic genera can invade and interact with host plants in laboratory growth experiments. However, it is uncertain if root invasion by saprotrophic fungi is a widespread phenomenon and if laboratory interactions mirror field conditions. Here, we focused on the widespread and speciose saprotrophic genus Mycena and performed (1) a systematic survey of their occurrences (in ITS1/ITS2 datasets) in mycorrhizal roots of 10 plant species, and (2) an analysis of natural abundances of 13 C/15 N stable isotope signatures of Mycena basidiocarps from five field locations to examine their trophic status. We found that Mycena was the only saprotrophic genus consistently found in 9 out of 10 plant host roots, with no indication that the host roots were senescent or otherwise vulnerable. Furthermore, Mycena basidiocarps displayed isotopic signatures consistent with published 13 C/15 N profiles of both saprotrophic and mutualistic lifestyles, supporting earlier laboratory-based studies. We argue that Mycena are widespread latent invaders of healthy plant roots and that Mycena species may form a spectrum of interactions besides saprotrophy also in the field.


Assuntos
Agaricales , Micorrizas , Simbiose , Plantas/microbiologia , Raízes de Plantas/microbiologia
6.
Mol Ecol ; 31(11): 3241-3253, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35363919

RESUMO

During decomposition of organic matter, microbial communities may follow different successional trajectories depending on the initial environment and colonizers. The timing and order of the species arrival (assembly history) can lead to divergent communities through priority effects. We explored how assembly history and resource quality affected fungal communities and decay rate of decomposing wood, 1.5 and 4.5 years after tree felling. Additionally, we investigated the effect of invertebrate exclusion during the first two summers. We measured initial resource quality of bark and wood of aspen (Populus tremula) logs and surveyed the fungal communities by DNA metabarcoding at different times during succession. We found that gradients in fungal community composition were related to resource quality and we discuss how this may reflect different fungal life history strategies. As with previous studies, the initial amount of bark tannins was negatively correlated with wood decomposition rate over 4.5 years. The initial fungal community explained variation in community composition after 1.5, but not 4.5, years of succession. Although the assembly history of initial colonizers may cause alternative trajectories in successional communities, our results indicate that the communities may converge with the arrival of secondary colonizers. We also identified a strong legacy of invertebrate exclusion on fungal communities, even after 4.5 years of succession, thereby adding crucial knowledge on the importance of invertebrates in affecting fungal community development. By measuring and manipulating aspects of assembly history and resource quality that have rarely been studied, we expand our understanding of the complexity of fungal community dynamics.


Assuntos
Micobioma , Madeira , Animais , Fungos/genética , Invertebrados , Árvores , Madeira/microbiologia
7.
PLoS Genet ; 18(3): e1010097, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35358178

RESUMO

Balancing selection, an evolutionary force that retains genetic diversity, has been detected in multiple genes and organisms, such as the sexual mating loci in fungi. However, to quantify the strength of balancing selection and define the mating-related genes require a large number of strains. In tetrapolar basidiomycete fungi, sexual type is determined by two unlinked loci, MATA and MATB. Genes in both loci define mating type identity, control successful mating and completion of the life cycle. These loci are usually highly diverse. Previous studies have speculated, based on culture crosses, that species of the non-model genus Trichaptum (Hymenochaetales, Basidiomycota) possess a tetrapolar mating system, with multiple alleles. Here, we sequenced a hundred and eighty strains of three Trichaptum species. We characterized the chromosomal location of MATA and MATB, the molecular structure of MAT regions and their allelic richness. The sequencing effort was sufficient to molecularly characterize multiple MAT alleles segregating before the speciation event of Trichaptum species. Analyses suggested that long-term balancing selection has generated trans-species polymorphisms. Mating sequences were classified in different allelic classes based on an amino acid identity (AAI) threshold supported by phylogenetics. 17,550 mating types were predicted based on the allelic classes. In vitro crosses allowed us to support the degree of allelic divergence needed for successful mating. Even with the high amount of divergence, key amino acids in functional domains are conserved. We conclude that the genetic diversity of mating loci in Trichaptum is due to long-term balancing selection, with limited recombination and duplication activity. The large number of sequenced strains highlighted the importance of sequencing multiple individuals from different species to detect the mating-related genes, the mechanisms generating diversity and the evolutionary forces maintaining them.


Assuntos
Basidiomycota , Genes Fúngicos Tipo Acasalamento , Basidiomycota/genética , Genes Fúngicos Tipo Acasalamento/genética , Filogenia
8.
New Phytol ; 234(6): 2073-2087, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35307841

RESUMO

The replacement of native birch with Norway spruce has been initiated in Norway to increase long-term carbon storage in forests. However, there is limited knowledge on the impacts that aboveground changes will have on the belowground microbiota. We examined which effects a tree species shift from birch to spruce stands has on belowground microbial communities, soil fungal biomass and relationships with vegetation biomass and soil organic carbon (SOC). Replacement of birch with spruce negatively influenced soil bacterial and fungal richness and strongly altered microbial community composition in the forest floor layer, most strikingly for fungi. Tree species-mediated variation in soil properties was a major factor explaining variation in bacterial communities. For fungi, both soil chemistry and understorey vegetation were important community structuring factors, particularly for ectomycorrhizal fungi. The relative abundance of ectomycorrhizal fungi and the ectomycorrhizal : saprotrophic fungal ratio were higher in spruce compared to birch stands, particularly in the deeper mineral soil layers, and vice versa for saprotrophs. The positive relationship between ergosterol (fungal biomass) and SOC stock in the forest floor layer suggests higher carbon sequestration potential in spruce forest soil, alternatively, that the larger carbon stock leads to an increase in soil fungal biomass.


Assuntos
Micorrizas , Picea , Betula/microbiologia , Biota , Carbono , Florestas , Picea/microbiologia , Solo/química , Microbiologia do Solo , Taiga , Árvores
9.
Proc Biol Sci ; 289(1968): 20212622, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35105237

RESUMO

Biological communities within living organisms are structured by their host's traits. How host traits affect biodiversity and community composition is poorly explored for some associations, such as arthropods within fungal fruit bodies. Using DNA metabarcoding, we characterized the arthropod communities in living fruit bodies of 11 wood-decay fungi from boreal forests and investigated how they were affected by different fungal traits. Arthropod diversity was higher in fruit bodies with a larger surface area-to-volume ratio, suggesting that colonization is crucial to maintain arthropod populations. Diversity was not higher in long-lived fruit bodies, most likely because these fungi invest in physical or chemical defences against arthropods. Arthropod community composition was structured by all measured host traits, namely fruit body size, thickness, surface area, morphology and toughness. Notably, we identified a community gradient where soft and short-lived fruit bodies harboured more true flies, while tougher and long-lived fruit bodies had more oribatid mites and beetles, which might reflect different development times of the arthropods. Ultimately, close to 75% of the arthropods were specific to one or two fungal hosts. Besides revealing surprisingly diverse and host-specific arthropod communities within fungal fruit bodies, our study provided insight into how host traits structure communities.


Assuntos
Artrópodes , Animais , Biodiversidade , Código de Barras de DNA Taxonômico , Frutas , Madeira
10.
Appl Environ Microbiol ; 88(6): e0211321, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35196140

RESUMO

Many children spend considerable time in daycare centers and may be influenced by the indoor microorganisms there, including fungi. In this study, we investigate the indoor mycobiomes of 125 daycare centers distributed along strong environmental gradients throughout Norway. Dust samples were collected from doorframes outside and inside buildings using a community science sampling approach. Fungal communities in the dust samples were analyzed using DNA metabarcoding of the internal transcribed spacer 2 (ITS2) region. We observed a marked difference between the outdoor and indoor mycobiomes. The indoor mycobiomes included considerably more yeasts and molds than the outdoor samples, with Saccharomyces, Mucor, Malassezia, and Penicillium being among the most dominant fungal genera. Changes in the indoor fungal richness and composition correlated with numerous variables related to both outdoor and indoor conditions; there was a clear geographic structure in the indoor mycobiome composition that mirrored the outdoor climate, ranging from humid areas in western Norway to drier and colder areas in eastern Norway. Moreover, the number of children in the daycare centers, as well as various building features, influenced the indoor mycobiome composition. We conclude that the indoor mycobiomes in Norwegian daycare centers are structured by multiple factors and are dominated by yeasts and molds. This study exemplifies how community science sampling enables DNA-based analyses of a high number of samples covering wide geographic areas. IMPORTANCE With an alarming increase in chronic diseases like childhood asthma and allergies, there is an increased focus on the exposure of young children to indoor biological and chemical air pollutants. Our study of 125 daycares throughout Norway demonstrates that the indoor mycobiome not only reflects cooccurring outdoor fungi but also includes a high abundance of yeast and mold fungi with an affinity for indoor environments. A multitude of factors influence the indoor mycobiomes in daycares, including the building type, inhabitants, as well as the outdoor environment. Many of the detected yeasts and molds are likely associated with the human body, where some have been coupled with allergies and respiratory problems. Our results call for further studies investigating the potential impact of the identified daycare-associated mycobiomes on children's health.


Assuntos
Poluição do Ar em Ambientes Fechados , Micobioma , Poluição do Ar em Ambientes Fechados/análise , Criança , Pré-Escolar , Poeira/análise , Monitoramento Ambiental/métodos , Fungos/genética , Humanos
11.
Mol Ecol ; 31(7): 1963-1979, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35076968

RESUMO

Genome sequencing of spatially distributed individuals sheds light on how evolution structures genetic variation. Populations of Phellopilus nigrolimitatus, a red-listed wood-inhabiting fungus associated with old-growth coniferous forests, have decreased in size over the last century due to a loss of suitable habitats. We assessed the population genetic structure and investigated local adaptation in P. nigrolimitatus, by establishing a reference genome and genotyping 327 individuals sampled from 24 locations in Northern Europe by RAD sequencing. We revealed a shallow population genetic structure, indicating large historical population sizes and high levels of gene flow. Despite this weak substructuring, two genetic groups were recognized; a western group distributed mostly in Norway and an eastern group covering most of Finland, Poland and Russia. This substructuring may reflect coimmigration with the main host, Norway spruce (Picea abies), into Northern Europe after the last ice age. We found evidence of low levels of genetic diversity in southwestern Finland, which has a long history of intensive forestry and urbanization. Numerous loci were significantly associated with one or more environmental factors, indicating adaptation to specific environments. These loci clustered into two groups with different associations with temperature and precipitation. Overall, our findings indicate that the current population genetic structure of P. nigrolimitatus results from a combination of gene flow, genetic drift and selection. The acquisition of similar knowledge especially over broad geographic scales, linking signatures of adaptive genetic variation to evolutionary processes and environmental variation, for other fungal species will undoubtedly be useful for assessment of the combined effects of habitat fragmentation and climate change on fungi strongly bound to old-growth forests.


Assuntos
Fluxo Gênico , Picea , Florestas , Fungos , Humanos , Metagenômica , Picea/genética
12.
New Phytol ; 234(6): 2032-2043, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34559896

RESUMO

Dead fungal mycelium (necromass) represents a critical component of soil carbon (C) and nutrient cycles. Assessing how the microbial communities associated with decomposing fungal necromass change as global temperatures rise will help in determining how these belowground organic matter inputs contribute to ecosystem responses. In this study, we characterized the structure of bacterial and fungal communities associated with multiple types of decaying mycorrhizal fungal necromass incubated within mesh bags across a 9°C whole ecosystem temperature enhancement in a boreal peatland. We found major taxonomic and functional shifts in the microbial communities present on decaying mycorrhizal fungal necromass in response to warming. These changes were most pronounced in hollow microsites, which showed convergence towards the necromass-associated microbial communities present in unwarmed hummocks. We also observed a high colonization of ericoid mycorrhizal fungal necromass by fungi from the same genera as the necromass. These results indicate that microbial communities associated with mycorrhizal fungal necromass decomposition are likely to change significantly with future climate warming, which may have strong impacts on soil biogeochemical cycles in peatlands. Additionally, the high enrichment of congeneric fungal decomposers on ericoid mycorrhizal necromass may help to explain the increase in ericoid shrub dominance in warming peatlands.


Assuntos
Microbiota , Micobioma , Micorrizas , Ecossistema , Micorrizas/fisiologia , Solo/química , Microbiologia do Solo
13.
Microbiome ; 9(1): 220, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753520

RESUMO

BACKGROUND: Children spend considerable time in daycare centers in parts of the world and are exposed to the indoor micro- and mycobiomes of these facilities. The level of exposure to microorganisms varies within and between buildings, depending on occupancy, climate, and season. In order to evaluate indoor air quality, and the effect of usage and seasonality, we investigated the spatiotemporal variation in the indoor mycobiomes of two daycare centers. We collected dust samples from different rooms throughout a year and analyzed their mycobiomes using DNA metabarcoding. RESULTS: The fungal community composition in rooms with limited occupancy (auxiliary rooms) was similar to the outdoor samples, and clearly different from the rooms with higher occupancy (main rooms). The main rooms had higher abundance of Ascomycota, while the auxiliary rooms contained comparably more Basidiomycota. We observed a strong seasonal pattern in the mycobiome composition, mainly structured by the outdoor climate. Most markedly, basidiomycetes of the orders Agaricales and Polyporales, mainly reflecting typical outdoor fungi, were more abundant during summer and fall. In contrast, ascomycetes of the orders Saccharomycetales and Capnodiales were dominant during winter and spring. CONCLUSIONS: Our findings provide clear evidences that the indoor mycobiomes in daycare centers are structured by occupancy as well as outdoor seasonality. We conclude that the temporal variability should be accounted for in indoor mycobiome studies and in the evaluation of indoor air quality of buildings. Video abstract.


Assuntos
Poluição do Ar em Ambientes Fechados , Micobioma , Microbiologia do Ar , Poluição do Ar em Ambientes Fechados/análise , Criança , Poeira/análise , Monitoramento Ambiental , Fungos/genética , Humanos , Estações do Ano
14.
Mol Ecol ; 30(19): 4926-4938, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34314543

RESUMO

Climate change is causing upward shift of forest lines worldwide, with consequences for soil biota and carbon (C) sequestration. We here analyse compositional changes in the soil biota across the forest line ecotone, an important transition zone between different ecosystems. We collected soil samples along transects stretching from subalpine mountain birch forests to alpine heath. Soil fungi and micro-eukaryotes were surveyed using DNA metabarcoding of the ITS2 and 18S markers, while ergosterol was used to quantify fungal biomass. We observed a strong shift in the soil biota across the forest line ecotone: Below the forest line, there were higher proportions of basidiomycetes and mucoromycetes, including ectomycorrhizal and saprotrophic fungi. Above it, we observed relatively more root-associated ascomycetes, including Archaeorhizomycetes, ericoid mycorrhizal fungi and dark septate endophytes. Ergosterol and percentage C content in soil correlated strongly and positively with the abundance of root-associated ascomycetes. The predominance of ectomycorrhizal and saprotrophic fungi below the forest line probably promote high C turnover, while root-associated ascomycetes above the forest line may enhance C sequestration. With further rise in forest lines, there will be a corresponding shift in the below-ground biota, probably leading to enhanced release of soil C.


Assuntos
Micobioma , Micorrizas , Ecossistema , Florestas , Fungos/genética , Micobioma/genética , Micorrizas/genética , Solo , Microbiologia do Solo
15.
FEMS Microbiol Ecol ; 97(7)2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34057174

RESUMO

Plantations of Norway spruce have been established well beyond its natural range in many parts of the world, potentially impacting native microbial ecosystems and the processes they mediate. In this study, we investigate how the establishment of spruce plantations in a landscape dominated by native birch forests in western Norway impacts soil properties and belowground fungal communities. Soil cores were collected from neighboring stands of planted spruce and native birch forests. We used DNA metabarcoding of the rDNA internal transcribed spacer 2 region and ergosterol measurements to survey the fungal community composition and its biomass, respectively. In the two investigated soil layers (litter and humus), fungal community composition, diversity and biomass were strongly affected by the tree species shift. Native birch stands hosted markedly richer fungal communities, including numerous fungi not present in planted spruce stands. In contrast, the spruce stands included higher relative abundance of ectomycorrhizal fungi as well as higher fungal biomass. Hence, establishing plantations of Norway spruce in native birch forests leads to significant losses in diversity, but increase in biomass of ectomycorrhizal fungi, which could potentially impact carbon sequestration processes and ecosystem functioning.


Assuntos
Betula , Solo , Ecossistema , Florestas , Fungos/genética , Noruega , Microbiologia do Solo , Árvores
16.
Mol Ecol ; 30(12): 2772-2789, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33955084

RESUMO

Globalization and international trade have impacted organisms around the world leading to a considerable number of species establishing in new geographic areas. Many organisms have taken advantage of human-made environments, including buildings. One such species is the dry rot fungus Serpula lacrymans, which is the most aggressive wood-decay fungus in indoor environments in temperate regions. Using population genomic analyses of 36 full genome sequenced isolates, we demonstrated that European and Japanese isolates are highly divergent and the populations split 3000-19,000 generations ago, probably predating human influence. Approximately 250 generations ago, the European population went through a tight bottleneck, probably corresponding to the fungus colonization of the built environment in Europe. The demographic history of these populations, probably lead to low adaptive potential. Only two loci under selection were identified using a Fst outlier approach, and selective sweep analyses identified three loci with extended haplotype homozygosity. The selective sweep analyses found signals in genes possibly related to decay of various substrates in Japan and in genes involved DNA replication and protein modification in Europe. Our results suggest that the dry rot fungus independently established in indoor environments in Europe and Japan and that invasive species can potentially establish large populations in new habitats based on a few colonizing individuals.


Assuntos
Adaptação Biológica , Basidiomycota/genética , Adaptação Biológica/genética , Europa (Continente) , Genoma Fúngico , Espécies Introduzidas , Japão
17.
Sci Rep ; 11(1): 9357, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931660

RESUMO

Grain dust exposure is associated with respiratory symptoms among grain industry workers. However, the fungal assemblage that contribute to airborne grain dust has been poorly studied. We characterized the airborne fungal diversity at industrial grain- and animal feed mills, and identified differences in diversity, taxonomic compositions and community structural patterns between seasons and climatic zones. The fungal communities displayed strong variation between seasons and climatic zones, with 46% and 21% of OTUs shared between different seasons and climatic zones, respectively. The highest species richness was observed in the humid continental climate of the southeastern Norway, followed by the continental subarctic climate of the eastern inland with dryer, short summers and snowy winters, and the central coastal Norway with short growth season and lower temperature. The richness did not vary between seasons. The fungal diversity correlated with some specific mycotoxins in settled dust and with fibrinogen in the blood of exposed workers, but not with the personal exposure measurements of dust, glucans or spore counts. The study contributes to a better understanding of fungal exposures in the grain and animal feed industry. The differences in diversity suggest that the potential health effects of fungal inhalation may also be different.


Assuntos
Poluentes Ocupacionais do Ar/efeitos adversos , Mediadores da Inflamação/metabolismo , Inflamação/epidemiologia , Exposição por Inalação/efeitos adversos , Micobioma , Micotoxinas/efeitos adversos , Exposição Ocupacional/efeitos adversos , Microbiologia do Ar , Poluentes Ocupacionais do Ar/análise , Poeira/análise , Grão Comestível/química , Fungos/classificação , Fungos/patogenicidade , Humanos , Inflamação/etiologia , Inflamação/patologia , Exposição por Inalação/análise , Micotoxinas/análise , Noruega/epidemiologia , Exposição Ocupacional/análise , Estações do Ano
18.
Mol Ecol ; 30(11): 2689-2705, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33830574

RESUMO

In the built environment, fungi can cause important deterioration of building materials and have adverse health effects on occupants. Increased knowledge about indoor mycobiomes from different regions of the world, and their main environmental determinants, will enable improved indoor air quality management and identification of health risks. This is the first citizen science study of indoor mycobiomes at a large geographical scale in Europe, including 271 houses from Norway and 807 dust samples from three house compartments: outside of the building, living room and bathroom. The fungal community composition determined by DNA metabarcoding was clearly different between indoor and outdoor samples, but there were no significant differences between the two indoor compartments. The 32 selected variables, related to the outdoor environment, building features and occupant characteristics, accounted for 15% of the overall variation in community composition, with the house compartment as the key factor (7.6%). Next, climate was the main driver of the dust mycobiomes (4.2%), while building and occupant variables had significant but minor influences (1.4% and 1.1%, respectively). The house-dust mycobiomes were dominated by ascomycetes (⁓70%) with Capnodiales and Eurotiales as the most abundant orders. Compared to the outdoor samples, the indoor mycobiomes showed higher species richness, which is probably due to the mixture of fungi from outdoor and indoor sources. The main indoor indicator fungi belonged to two ecological groups with allergenic potential: xerophilic moulds and skin-associated yeasts. Our results suggest that citizen science is a successful approach for unravelling the built microbiome at large geographical scales.


Assuntos
Ciência do Cidadão , Micobioma , Poeira/análise , Europa (Continente) , Fungos/genética , Micobioma/genética , Noruega
19.
Fungal Biol ; 125(4): 269-275, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33766305

RESUMO

Trichaptum abietinum and Trichaptum fuscoviolaceum (Hymenochaetales, Basidiomycota) are closely related saprotrophic fungi, widely distributed on coniferous wood in temperate regions worldwide. Three intersterility groups have previously been detected in T. abietinum, while no prezygotic barriers have been proven within T. fuscoviolaceum. The aim of this study was to reveal the phylogeography and genetic relationship between these two closely related species and to explore whether the previously observed intersterility groups in T. abietinum are reflected in the genetic data. We assembled worldwide fruit body collections of both species (N = 314) and generated DNA sequences from three nuclear (ITS2, LSU, IGS) and one mitochondrial rDNA region (mtLSU). The two species are genetically well separated in all analyses. In correspondence with observations from earlier mating studies, our results revealed that T. fuscoviolaceum is genetically more uniform than T. abietinum. Multiple genetic sub-groups exist in T. abietinum that may correspond to the previously observed intersterility groups. However, there is low consistency across the investigated loci in delimiting the different sub-groups, except for a consistent North American group. As for many other widespread fungi, a complex phylogeographic pattern is found in T. abietinum which may have been formed by geographic, as well as multiple genetic intersterility barriers.


Assuntos
Basidiomycota , DNA Ribossômico/genética , Filogenia , Filogeografia
20.
FEMS Microbiol Ecol ; 97(3)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33547899

RESUMO

Soil depth represents a strong physiochemical gradient that greatly affects soil-dwelling microorganisms. Fungal communities are typically structured by soil depth, but how other microorganisms are structured is less known. Here, we tested whether depth-dependent variation in soil chemistry affects the distribution and co-occurrence patterns of soil microbial communities. This was investigated by DNA metabarcoding in conjunction with network analyses of bacteria, fungi, as well as other micro-eukaryotes, sampled in four different soil depths in Norwegian birch forests. Strong compositional turnover in microbial assemblages with soil depth was detected for all organismal groups. Significantly greater microbial diversity and fungal biomass appeared in the nutrient-rich organic layer, with sharp decrease towards the less nutrient-rich mineral zones. The proportions of copiotrophic bacteria, Arthropoda and Apicomplexa were markedly higher in the organic layer, while patterns were opposite for oligotrophic bacteria, Cercozoa, Ascomycota and ectomycorrhizal fungi. Network analyses indicated more intensive inter-kingdom co-occurrence patterns in the upper mineral layer (0-5 cm) compared to the above organic and the lower mineral soil, signifying substantial influence of soil depth on biotic interactions. This study supports the view that different microbial groups are adapted to different forest soil strata, with varying level of interactions along the depth gradient.


Assuntos
Micobioma , Solo , Florestas , Fungos/genética , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...