Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38992302

RESUMO

The world is dealing with unprecedented environmental challenges, leading to a growing urgency to limit environmental damage. So, this study focuses on the synthesis of pure CuO, Zn, Ce, and Zn/Ce dual-doped CuO nanoparticles (NPs) using extract of Citrus limon leaves as reductant via simple co-precipitation method. The X-ray diffraction (XRD) characterization was employed to analyze structural characteristics of synthesized samples which confirm influence of Zn or Ce doping on crystallite size, dislocation density, and strain. The role of functional groups, changes in force constant, and bond length on addition of dopants was indicated by FTIR results. The SEM and TEM results showed variation in morphology from irregular to spherical. The zeta-potential and BET analysis confirmed surface potential as well as surface area characteristics. The change in energy gap values from 1.81 to 1.45 eV of Zn/Ce-doped CuO NPs computed from UV-vis analysis elevated its photocatalytic performance and reduced the chances of recombination of electron-hole pair due to presence of trapping levels between valence and conduction bands. The enhanced photo-degradation of Congo red (CR) and rhodamine B (RhB) with 91 and 94%, respectively, for Zn/Ce-doped CuO NPs was observed. The so-obtained samples have also exhibited good antibacterial and antioxidant activities.

2.
Chemosphere ; 345: 140419, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37848104

RESUMO

In response to the growing global concern over environmental pollution, the exploration of sustainable and eco-friendly materials derived from biomass waste has gained significant traction. This comprehensive review seeks to provide a holistic perspective on the utilization of biomass waste as a renewable carbon source, offering insights into the production of environmentally benign and cost-effective carbon-based materials. These materials, including biochar, carbon nanotubes, and graphene, have shown immense promise in the remediation of polluted soils, industrial wastewater, and contaminated groundwater. The review commences by elucidating the intricate processes involved in the synthesis and functionalization of biomass-derived carbon materials, emphasizing their scalability and economic viability. With their distinctive structural attributes, such as high surface areas, porous architectures, and tunable surface functionalities, these materials emerge as versatile tools in addressing environmental challenges. One of the central themes explored in this review is the pivotal role that carbon materials play in adsorption processes, which represent a green and sustainable technology for the removal of a diverse array of pollutants. These encompass noxious organic compounds, heavy metals, and organic matter, encompassing pollutants found in soils, groundwater, and industrial wastewater. The discussion extends to the underlying mechanisms governing adsorption, shedding light on the efficacy and selectivity of carbon-based materials in different environmental contexts. Furthermore, this review delves into multifaceted considerations, spanning the spectrum from biomass and biowaste resources to the properties and applications of carbon materials. This holistic approach aims to equip researchers and practitioners with a comprehensive understanding of the synergistic utilization of these materials, ultimately facilitating effective and affordable strategies for combatting industrial wastewater pollution, soil contamination, and groundwater impurities.


Assuntos
Poluentes Ambientais , Nanotubos de Carbono , Águas Residuárias , Biomassa , Poluentes Ambientais/química , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA