Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(17): 7604-7612, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38556753

RESUMO

A new iron(II) molecular complex {[W(CN)8][Fe(bik*)3]2}BF4·7H2O·1.5CH3OH (1.7H2O·1.5CH3OH) was synthesized using a versatile octacyanotungstate(V) building block and N-donor bidentate ligand (bik* = bis(1-ethyl-1H-imidazol-2-yl)ketone) and detailed characterizations were carried out. The crystal structure of 1.7H2O·1.5CH3OH is composed of an ionic salt from one anionic [W(CN)8]3- unit, two isolated cationic [Fe(bik*)3]2+ units, and one BF4- counteranion in the asymmetric unit. Magnetic studies of 1.7H2O·1.5CH3OH display interesting two-step reversible thermo-induced spin-state switching and the partially desolvated form 1.7H2O shows a photomagnetic effect at low temperatures. Additionally, the physical properties of 1.7H2O·1.5CH3OH were compared with the monomeric unit of {[Fe(bik*)3]2}·4ReO4·H2O (2.H2O) and detailed photophysical investigations were also performed to study the effect of a structural matrix {[W(CN)8]3- and ReO4- unit} on the spin-state switching properties of the [Fe(bik*)3]2+ unit in both systems (1.7H2O·1.5CH3OH and 2.H2O).

2.
Chem Commun (Camb) ; 59(88): 13107-13124, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37846652

RESUMO

Addressing molecular bistability as a function of external stimuli, especially in spin-crossover (SCO) and metal-to-metal electron transfer (MMET) systems, has seen a surge of interest in the field of molecule-based magnetic materials due to their enormous potential in various technological applications such as molecular spintronics, memory and electronic devices, switches, sensors, and many more. The fine-tuning of molecular components allow the design and synthesis of materials with tailored properties for these vast applications. In this Feature Article, we discuss a part of our research work into this broad topic, pertaining to the recent discoveries in the field of switchable molecular magnetic materials based on SCO and MMET systems, along with some historical background of the area and related accomplishments made in recent years.

3.
Inorg Chem ; 60(10): 7545-7552, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33929177

RESUMO

Following the complex-as-a-ligand strategy, self-assembly of [W(CN)8]3- and iron(II) with bidentate nitrogen donor ligand bik (bik = bis(1-methyl-1H-imidazol-2-yl)ketone) ligand affords a cyanide-bridged [W2Fe2] molecular square complex [HNBu3]2{[W(CN)8]2[Fe(bik)2]2}·6H2O·CH3OH (1). The complex was characterized by single-crystal X-ray diffraction analyses, (photo)magnetic studies, optical reflectivity, electrochemical studies, and spectroscopic studies. Structural analyses revealed that in the [W2Fe2] square motif tungsten(V) and iron(II) centers reside in an alternate corner of the square and are bridged by the cyanide ligands. Complex 1 exhibits thermo-induced spin crossover (SCO) between {WV (S = 1/2) - FeIILS (S = 0)} and {WV (S = 1/2) - FeIIHS (S = 2)} pairs near room temperature and photoinduced spin-state switching with TLIESST = 70 K under light irradiation at low temperature. To the best of our knowledge, 1 represents the first complex containing iron(II) and [WV(CN)8]3- units exhibiting both SCO and photomagnetic effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA