Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(5): e2317762121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38261616

RESUMO

Intravenous immunoglobulin (IVIg), a preparation of polyclonal serum IgG pooled from numerous blood donors, has been used for nearly three decades and is proving to be an efficient treatment for many autoimmune blistering diseases, including pemphigus vulgaris (PV). Despite its widespread use and therapeutic success, its mechanisms of action are not completely understood. Some of its anti-inflammatory and immunomodulatory actions have been studied. In this study, the authors present a twenty-year follow-up of 21 patients with clinical and immunopathological confirmed PV, treated with IVIg as monotherapy, according to an established published protocol. IVIg therapy produced long-term sustained, clinical, serological, and immunopathological remission. For 20 y, these patients received no drugs and experienced no disease. This observation suggests that there was the establishment of immune balance or restoration of immune regulation in these PV patients. Twelve (57%) patients experienced no relapse during follow-up. Six (29%) patients experienced a relapse due to acute stress or post-coronavirus infection and/or vaccination. Reinstitution of IVIg resulted in prompt sustained recovery. Three (14.2%) patients, in clinical and serological remission, died due to unrelated causes. No severe adverse effects from IVIg were documented in all 21 patients. The simultaneous or sequential anti-inflammatory and immunomodulatory effects of IVIg may have influenced the long-term clinical remission observed. This study provides a human prototype to examine the pathophysiology of autoimmunity and a model to study immune regulation and mechanisms that can facilitate restoring immune tolerance.


Assuntos
Doenças Autoimunes , Pênfigo , Humanos , Imunoglobulinas Intravenosas , Tolerância Imunológica , Anti-Inflamatórios
2.
J Allergy Clin Immunol Pract ; 11(6): 1688-1697, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37062358

RESUMO

Intravenous immunoglobulin (IVIG) is the mainstay of therapy for humoral immune deficiencies and numerous inflammatory disorders. Although the use of IVIG may be supplanted by several targeted therapies to cytokines, the ability of polyclonal normal IgG to act as an effector molecule as well as a regulatory molecule is a clear example of the polyfunctionality of IVIG. This article will address the mechanism of action of IVIG in a number of important conditions that are otherwise resistant to treatment. In this commentary, we will highlight mechanistic studies that shed light on the action of IVIG. This will be approached by identifying effects that are both common and disease-specific, targeting actions that have been demonstrated on cells and processes that represent both innate and adaptive immune responses.


Assuntos
Doenças Autoimunes , Síndromes de Imunodeficiência , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , Citocinas , Imunidade Humoral
3.
Commun Biol ; 6(1): 168, 2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774392

RESUMO

Intravascular hemolysis occurs in diverse pathological conditions. Extracellular hemoglobin and heme have strong pro-oxidative and pro-inflammatory potentials that can contribute to the pathology of hemolytic diseases. However, many of the effects of extracellular hemoglobin and heme in hemolytic diseases are still not well understood. Here we demonstrate that oxidized hemoglobin (methemoglobin) can modify the antigen-binding characteristics of human immunoglobulins. Thus, incubation of polyclonal or some monoclonal human IgG in the presence of methemoglobin results in an appearance of binding reactivities towards distinct unrelated self-proteins, including the protein constituent of hemoglobin i.e., globin. We demonstrate that a transfer of heme from methemoglobin to IgG is indispensable for this acquisition of antibody polyreactivity. Our data also show that only oxidized form of hemoglobin have the capacity to induce polyreactivity of antibodies. Site-directed mutagenesis of a heme-sensitive human monoclonal IgG1 reveals details about the mechanism of methemoglobin-induced antigen-binding polyreactivity. Further here we assess the kinetics and thermodynamics of interaction of a heme-induced polyreactive human antibody with hemoglobin and myoglobin. Taken together presented data contribute to a better understanding of the functions of extracellular hemoglobin in the context of hemolytic diseases.


Assuntos
Heme , Metemoglobina , Humanos , Heme/metabolismo , Metemoglobina/metabolismo , Hemoglobinas/metabolismo , Imunoglobulina G , Anticorpos Monoclonais , Hemólise
4.
Hemasphere ; 6(2): e670, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35098039

RESUMO

In 2016, the European Hematology Association (EHA) published the EHA Roadmap for European Hematology Research 1 aiming to highlight achievements in the diagnostics and treatment of blood disorders, and to better inform European policy makers and other stakeholders about the urgent clinical and scientific needs and priorities in the field of hematology. Each section was coordinated by 1-2 section editors who were leading international experts in the field. In the 5 years that have followed, advances in the field of hematology have been plentiful. As such, EHA is pleased to present an updated Research Roadmap, now including eleven sections, each of which will be published separately. The updated EHA Research Roadmap identifies the most urgent priorities in hematology research and clinical science, therefore supporting a more informed, focused, and ideally a more funded future for European hematology research. The 11 EHA Research Roadmap sections include Normal Hematopoiesis; Malignant Lymphoid Diseases; Malignant Myeloid Diseases; Anemias and Related Diseases; Platelet Disorders; Blood Coagulation and Hemostatic Disorders; Transfusion Medicine; Infections in Hematology; Hematopoietic Stem Cell Transplantation; CAR-T and Other Cell-based Immune Therapies; and Gene Therapy.

5.
Autoimmun Rev ; 20(7): 102850, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33971345

RESUMO

Intravenous immunoglobulin (IVIG) is used to treat several autoimmune and inflammatory diseases, but some patients are refractory to IVIG and require alternative treatments. Identifying a biomarker that could segregate IVIG responders from non-responders has been a subject of intense research. Unfortunately, previous transcriptomic studies aimed at addressing IVIG resistance have failed to predict a biomarker that could identify IVIG-non-responders. Therefore, we used a novel data mining technique on the publicly available transcriptomic data of Kawasaki disease (KD) patients treated with IVIG to identify potential biomarkers of IVIG response. By studying the boolean patterns hidden in the expression profiles of KD patients undergoing IVIG therapy, we have identified new metabolic pathways implicated in IVIG resistance in KD. These pathways could be used as biomarkers to segregate IVIG non-responders from responders prior to IVIG infusion. Also, boolean analysis of the transcriptomic data could be further extended to identify a universal biomarker that might predict IVIG response in other autoimmune diseases.


Assuntos
Imunoglobulinas Intravenosas , Síndrome de Linfonodos Mucocutâneos , Biomarcadores , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , Lactente , Síndrome de Linfonodos Mucocutâneos/diagnóstico , Síndrome de Linfonodos Mucocutâneos/tratamento farmacológico , Síndrome de Linfonodos Mucocutâneos/genética , Estudos Retrospectivos , Transcriptoma
7.
Clin Transl Immunology ; 9(10): e1198, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33088506

RESUMO

Intravenous immunoglobulin (IVIG), a pooled normal IgG from several thousand healthy donors and one of the commonly used immunotherapeutic molecules for the management of autoimmune and inflammatory diseases, has been explored for the treatment of coronavirus disease-19 (COVID-19). Although placebo-controlled, double-blind randomised clinical trials are lacking, current data from either retrospective, case series or open-label randomised controlled trials provide an indicator that IVIG immunotherapy could benefit severe and critically ill COVID-19 patients. See alsoShao et al.

8.
Cell Rep Med ; 1(2): 100016, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32562483

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has infected millions, with more than 275,000 fatal cases as of May 8, 2020. Currently, there are no specific COVID-19 therapies. Most patients depend on mechanical ventilation. Current COVID-19 data clearly highlight that cytokine storm and activated immune cell migration to the lungs characterize the early immune response to COVID-19 that causes severe lung damage and development of acute respiratory distress syndrome. In view of uncertainty associated with immunosuppressive treatments, such as corticosteroids and their possible secondary effects, including risks of secondary infections, we suggest immunotherapies as an adjunct therapy in severe COVID-19 cases. Such immunotherapies based on inflammatory cytokine neutralization, immunomodulation, and passive viral neutralization not only reduce inflammation, inflammation-associated lung damage, or viral load but could also prevent intensive care unit hospitalization and dependency on mechanical ventilation, both of which are limited resources.


Assuntos
COVID-19/terapia , Imunoterapia , Anticorpos Monoclonais/uso terapêutico , Antivirais/uso terapêutico , COVID-19/imunologia , Terapia Combinada , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/terapia , Citocinas/imunologia , Humanos , Imunização Passiva , Imunoglobulinas Intravenosas/uso terapêutico , Inflamação , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/transplante , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/terapia , SARS-CoV-2 , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/transplante
9.
Commun Biol ; 3(1): 96, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132640

RESUMO

Therapeutic normal IgG intravenous immunoglobulin (IVIG) is a well-established first-line immunotherapy for many autoimmune and inflammatory diseases. Though several mechanisms have been proposed for the anti-inflammatory actions of IVIG, associated signaling pathways are not well studied. As ß-catenin, the central component of the canonical Wnt pathway, plays an important role in imparting tolerogenic properties to dendritic cells (DCs) and in reducing inflammation, we explored whether IVIG induces the ß-catenin pathway to exert anti-inflammatory effects. We show that IVIG in an IgG-sialylation independent manner activates ß-catenin in human DCs along with upregulation of Wnt5a secretion. Mechanistically, ß-catenin activation by IVIG requires intact IgG and LRP5/6 co-receptors, but FcγRIIA and Syk are not implicated. Despite induction of ß-catenin, this pathway is dispensable for anti-inflammatory actions of IVIG in vitro and for mediating the protection against experimental autoimmune encephalomyelitis in vivo in mice, and reciprocal regulation of effector Th17/Th1 and regulatory T cells.


Assuntos
Células Dendríticas/efeitos dos fármacos , Imunoglobulinas Intravenosas/farmacologia , beta Catenina/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Células Th17/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/efeitos dos fármacos
10.
Cell Death Dis ; 11(1): 50, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974400

RESUMO

Autophagy plays an important role in the regulation of autoimmune and autoinflammatory responses of the immune cells. Defective autophagy process is associated with various autoimmune and inflammatory diseases. Moreover, in many of these diseases, the therapeutic use of normal immunoglobulin G or intravenous immunoglobulin (IVIG), a pooled normal IgG preparation, is well documented. Therefore, we explored if IVIG immunotherapy exerts therapeutic benefits via induction of autophagy in the immune cells. Here we show that IVIG induces autophagy in peripheral blood mononuclear cells (PBMCs). Further dissection of this process revealed that IVIG-induced autophagy is restricted to inflammatory cells like monocytes, dendritic cells, and M1 macrophages but not in cells associated with Th2 immune response like M2 macrophages. IVIG induces autophagy by activating AMP-dependent protein kinase, beclin-1, class III phosphoinositide 3-kinase and p38 mitogen-activated protein kinase and by inhibiting mammalian target of rapamycin. Mechanistically, IVIG-induced autophagy is F(ab')2-dependent but sialylation independent, and requires endocytosis of IgG by innate cells. Inhibition of autophagy compromised the ability of IVIG to suppress the inflammatory cytokines in innate immune cells. Moreover, IVIG therapy in inflammatory myopathies such as dermatomyositis, antisynthetase syndrome and immune-mediated necrotizing myopathy induced autophagy in PBMCs and reduced inflammatory cytokines in the circulation, thus validating the translational importance of these results. Our data provide insight on how circulating normal immunoglobulins maintain immune homeostasis and explain in part the mechanism by which IVIG therapy benefits patients with autoimmune and inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Autofagia/efeitos dos fármacos , Imunoglobulinas Intravenosas/farmacologia , Leucócitos Mononucleares/metabolismo , Adenilato Quinase/metabolismo , Proteína Beclina-1/metabolismo , Linhagem Celular , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Células Dendríticas/ultraestrutura , Endocitose/efeitos dos fármacos , Humanos , Imunidade Inata/efeitos dos fármacos , Fragmentos Fab das Imunoglobulinas/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Organelas/efeitos dos fármacos , Organelas/metabolismo , Organelas/ultraestrutura , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Doadores de Tecidos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Int J Mol Sci ; 21(2)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941161

RESUMO

Basophils are rare granulocytes and dysregulated functions of these cells are associated with several atopic and non-atopic allergic diseases of skin, respiratory system and gastrointestinal tract. Both cytokines and immunoglobulin E (IgE) are implicated in mediating the basophil activation and pathogenesis of these disorders. Several reports have shown that healthy individuals, and patients with allergic disorders display IgG autoantibodies to IgE and hence functional characterization of these anti-IgE IgG autoantibodies is critical. In general, anti-IgE IgG autoantibodies modulate basophil activation irrespective of allergen specificity by interacting with constant domains of IgE. Therefore, an ideal solution to prove the functions of such anti-IgE IgG autoantibodies would be to completely eliminate type I high affinity immunoglobulin E receptor (FcɛRI)-bound IgE from the surface of basophils and to demonstrate in an unequivocal manner the role of anti-IgE IgG autoantibodies. In line with previous reports, our data show that FcɛRI on peripheral blood basophils are almost saturated with IgE. Further, acetic acid buffer (pH 4) efficiently removes these FcɛRI-bound IgE. Although immediately following acetic acid-elution of IgE had no repercussion on the viability of basophils, following 24 hours culture with interleukin-3 (IL-3), the viability and yield of basophils were drastically reduced in acid-treated cells and had repercussion on the induction of activation markers. Lactic acid treatment on the other hand though had no adverse effects on the viability of basophils and IL-3-induced activation, it removed only a small fraction of the cell surface bound IgE. Thus, our results show that acid buffers could be used for the elution of FcɛRI-bound IgE on the basophil surface for the biochemical characterization of IgE antibodies or for the immediate use of basophils to determine their sensitivity to undergo degranulation by specific allergens. However, these methods are not utile for the functional assays of basophils that require longer duration of culture and entire removal of surface IgE to validate the role of anti-IgE IgG autoantibodies that interact with FcɛRI-bound IgE irrespective of allergen specificity.


Assuntos
Ácido Acético , Basófilos , Bioensaio , Imunoglobulina E , Receptores de IgE/imunologia , Ácido Acético/química , Ácido Acético/farmacologia , Basófilos/química , Basófilos/imunologia , Técnicas de Cultura de Células , Humanos , Imunoglobulina E/química , Imunoglobulina E/imunologia
12.
Hum Vaccin Immunother ; 16(2): 233-239, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30945973

RESUMO

Intravenous immunoglobulin (IVIG) is one of the widely used immunotherapeutic molecules in the therapy of autoimmune and inflammatory diseases. Previous reports demonstrate that one of the anti-inflammatory actions of IVIG implicates suppression of macrophage activation and release of their inflammatory mediators. However, macrophages are highly plastic and depending on the microenvironmental signals, macrophages can be polarized into pro-inflammatory classic (M1) or anti-inflammatory alternative (M2) type. This plasticity of macrophages raised additional questions on the role of IVIG towards macrophage polarization. In the present report, we show that IVIG affects the polarization of both classically and alternatively activated macrophages and this process is F(ab')2-independent. Our data thus indicate the lack of reciprocal regulation of inflammatory and non-inflammatory macrophages by IVIG.


Assuntos
Imunoglobulinas Intravenosas , Macrófagos , Anti-Inflamatórios , Ativação de Macrófagos
13.
Clin Rev Allergy Immunol ; 58(2): 213-228, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31161341

RESUMO

Natural antibodies (nAbs) are most commonly defined as immunoglobulins present in the absence of pathological conditions or deliberate immunizations. Occurrence of nAbs in germ- and antigen-free mice suggest that their production is driven, at least in part, by self-antigens. Accordingly, nAbs are constituted of natural autoantibodies (nAAbs), and can belong to the IgM, IgG, or IgA subclasses. These nAbs provide immediate protection against infection while the adaptive arm of the immune system mounts a specific and long-term response. Beyond immediate protection from infection, nAbs have been shown to play various functional roles in the immune system, which include clearance of apoptotic debris, suppression of autoimmune and inflammatory responses, regulation of B cell responses, selection of the B cell repertoires, and regulation of B cell development. These various functions of nAbs are afforded by their reactivity, which is broad, cross-reactive, and shown to recognize evolutionarily fixed epitopes shared between foreign and self-antigens. Furthermore, nAbs have unique characteristics that also contribute to their functional roles and set them apart from antigen-specific antibodies. In further support for the role of nAbs in the protection against infections and in the maintenance of immune homeostasis, the therapeutic preparation of polyclonal immunoglobulins, intravenous immunoglobulin (IVIG), rich in nAbs is commonly used in the replacement therapy of primary and secondary immunodeficiencies and in the immunotherapy of a large number of autoimmune and inflammatory diseases. Here, we review several topics on nAbs features and functions, and therapeutic applications in human diseases.


Assuntos
Anticorpos/imunologia , Homeostase/imunologia , Imunidade , Animais , Anticorpos/sangue , Formação de Anticorpos/imunologia , Resistência à Doença/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Tolerância Imunológica , Imunidade Inata , Isotipos de Imunoglobulinas/sangue , Isotipos de Imunoglobulinas/imunologia , Imunomodulação , Especificidade de Órgãos/imunologia
17.
Mol Immunol ; 111: 205-208, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31078967

RESUMO

Therapeutic intravenous immunoglobulin preparations (IVIg) are used for treatment of wide range of autoimmune and inflammatory diseases. Versatile mechanisms have been reported to contribute to the immunomodulatory effects of IVIg. Here we demonstrate that IVIg has a strong potential to inhibit pro-inflammatory effect of extracellular heme. Indeed, the presence of immunoglobulins reduced the potential of heme to activate the complement system on the surface of human endothelial cells. Since extracellular heme is considered as one of the principal pathogenic factors in hemolytic disorders, its therapeutic scavenging by IVIg may have significant clinical repercussions.


Assuntos
Anti-Inflamatórios/imunologia , Heme/imunologia , Imunoglobulinas Intravenosas/imunologia , Inflamação/imunologia , Doenças Autoimunes/imunologia , Linhagem Celular , Proteínas do Sistema Complemento/imunologia , Células Endoteliais/imunologia , Células Endoteliais da Veia Umbilical Humana , Humanos
19.
Int J Mol Sci ; 20(6)2019 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-30909599

RESUMO

Intravenous immunoglobulin (IVIg) therapy has diverse anti-inflammatory and immunomodulatory effects and has been employed successfully in autoimmune and inflammatory diseases. The role of IVIg therapy in the modulation of intestinal inflammation and fungal elimination has not been yet investigated. We studied IVIg therapy in a murine model of dextran sulfate sodium (DSS)-induced colitis. Mice received a single oral inoculum of Candida albicans and were exposed to DSS treatment for 2 weeks to induce colitis. All mice received daily IVIg therapy starting on day 1 for 7 days. IVIg therapy not only prevented a loss of body weight caused by the development of colitis but also reduced the severity of intestinal inflammation, as determined by clinical and histological scores. IVIg treatment significantly reduced the Escherichia coli, Enterococcus faecalis, and C. albicans populations in mice. The beneficial effects of IVIg were associated with the suppression of inflammatory cytokine interleukin (IL)-6 and enhancement of IL-10 in the gut. IVIg therapy also led to an increased expression of peroxisome proliferator-activated receptor gamma (PPARγ), while toll-like receptor 4 (TLR-4) expression was reduced. IVIg treatment reduces intestinal inflammation in mice and eliminates C. albicans overgrowth from the gut in association with down-regulation of pro-inflammatory mediators combined with up-regulation of anti-inflammatory cytokines.


Assuntos
Candida albicans/imunologia , Colite/tratamento farmacológico , Colite/etiologia , Homeostase/efeitos dos fármacos , Homeostase/imunologia , Imunoglobulinas Intravenosas/administração & dosagem , Intestinos/imunologia , Intestinos/microbiologia , Animais , Carga Bacteriana , Colite/diagnóstico , Colite/mortalidade , Contagem de Colônia Microbiana , Citocinas/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Imuno-Histoquímica , Mediadores da Inflamação , Camundongos , Índice de Gravidade de Doença , Resultado do Tratamento
20.
J Allergy Clin Immunol ; 144(2): 524-535.e8, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30529242

RESUMO

BACKGROUND: Therapeutic normal IgG or intravenous immunoglobulin (IVIG) exerts anti-inflammatory effects through several mutually nonexclusive mechanisms. Recent data in mouse models of autoimmune disease suggest that IVIG induces IL-4 in basophils by enhancing IL-33 in SIGN-related 1-positive innate cells. However, translational insight on these data is lacking. OBJECTIVE: We sought to investigate the effect of IVIG on human basophil functions. METHODS: Isolated circulating basophils from healthy donors were cultured in the presence of IL-3, IL-33, GM-CSF, thymic stromal lymphopoietin, or IL-25. The effect of IVIG and F(ab')2 and Fc IVIG fragments was examined based on expression of various surface molecules, phosphorylation of spleen tyrosine kinase, induction of cytokines, and histamine release. Basophil phenotypes were also analyzed from IVIG-treated patients with myopathy. Approaches, such as depletion of anti-IgE reactivity from IVIG, blocking antibodies, or inhibitors, were used to investigate the mechanisms. RESULTS: We report that IVIG directly induces activation of IL-3-primed human basophils, but IL-33 and other cytokines were dispensable for this effect. Activation of basophils by IVIG led to enhanced expression of CD69 and secretion of IL-4, IL-6, and IL-8. IVIG-treated patients with myopathy displayed enhanced expression of CD69 on basophils. The spleen tyrosine kinase pathway is implicated in these functions of IVIG and were mediated by F(ab')2 fragments. Mechanistically, IVIG induced IL-4 in human basophils by interacting with basophil surface-bound IgE but independent of FcγRII, type II Fc receptors, C-type lectin receptors, and sialic acid-binding immunoglobulin-like lectins. CONCLUSION: These results uncovered a pathway of promoting the TH2 response by IVIG through direct interaction of IgG with human basophils.


Assuntos
Anti-Inflamatórios/farmacologia , Basófilos/imunologia , Fragmentos Fc das Imunoglobulinas/farmacologia , Imunoglobulinas Intravenosas/farmacologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Basófilos/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Liberação de Histamina , Humanos , Imunoglobulina E/metabolismo , Interleucina-3/metabolismo , Lectinas Tipo C/metabolismo , Camundongos , Quinase Syk/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...