Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36297728

RESUMO

Northern peatlands, which are crucial reservoirs of carbon and nitrogen (415 ± 150 and 10 ± 7 Pg, respectively), are vulnerable to microbial mineralization after permafrost thaw. This study was carried out in four key sites containing northern permafrost peatland, which are located along the southern cryolithozone. The aim of this study is to characterize amino acids and the microbial community composition in peat strata along a climate gradient. Amino acids and microbiota diversity were studied by liquid chromatography and a quantitative polymerase chain reaction. The share of amino acid fragments was 2.6-7.8, and it is highly significantly correlated (r = 0.87, -0.74 and 0.67, p ˂ 0.05) with the organic nitrogen concentration in the soil, the C/N ratio, and δ15N. The data shows the existence of a large pool of microorganisms concentrated in permafrost peatlands, and a vertical continuum of bacteria, archaea, and microscopic fungi along the peat profile, due to the presence of microorganisms in each layer, throughout all the peat strata. There is no significant correlation between microorganism distribution and the plant macrofossil composition of the peat strata. Determining factors for the development of microorganism abundance are aeration and hydrothermal conditions. The availability of nitrogen will limit the ability of plants and microorganisms to respond to changing environmental conditions; however, with the increased decomposition of organic matter, amino acids will be released as organic sources of nitrogen stored in the protein material of peat-forming plants and microbial communities, which can also affect the organic nitrogen cycle.

2.
Sci Total Environ ; 828: 154350, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35263609

RESUMO

Permafrost degradation due to climate warming is currently observed in the northeastern part of European Russia. Peat plateaus underlain by permafrost cover only about 20% of the Russian European cryolithozone but contain almost 50% of soil organic carbon stocks (SOC), which are considered to be vulnerable to microbial mineralization after permafrost thaw. The current study was performed at three key sites of peat plateaus located along the southern permafrost limit. SOC decomposition was studied by aerobic and anaerobic incubation experiments, conducted at 4 °C over a period of 1301 days. The CO2 production was measured in peat samples at three key sites from the active layer (AL), transitional layer (TL), permafrost layer (PL), and at one site from the deep permafrost layer (DPL), which is in contact with mineral soil at 3.7 m depth. During the experiment, the initial СО2 respiration rates significantly differed in the samples AL, TL and PL in all key sites. However, at each site in the majority of samples the CO2 respiration rates were 2-5 times aerobically higher than anaerobically. In anaerobic conditions, in all sites, the СО2 respiration rate in PL was the lowest, higher in TL and the highest in AL in all 3 sites. Projections of CO2 aerobically production for 80 years represent 1.44 ± 0.11, 6.31 ± 0.47, 30.64 ± 17.98% of initial permafrost carbon from the samples of Inta 1, Inta 11 and Kolva respectively. But under anaerobical conditions estimates are close and indicate insignificant amounts 0.30…1.90% of carbon release over a period of 80 years. We suggest that even under ideal conditions of the incubation experiment, without considering ecological inertia under natural conditions, while also permafrost temperature is close to zero, greenhouse gas release from initial SOC is significantly less than estimated.


Assuntos
Gases de Efeito Estufa , Pergelissolo , Carbono/análise , Dióxido de Carbono/análise , Solo
3.
Plants (Basel) ; 10(12)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34961283

RESUMO

Based on the data of the plant macrofossil and palynological composition of the peat deposits, the evolution and current state of polygonal peatlands were analyzed at the southern limit of continuous permafrost in the Pur-Taz interfluve. Paleoreconstruction shows that peat accumulation began in the Early Holocene, about 9814 cal. year BP, in the Late Pre-Boreal (PB-2), at a rate of 1 to 1.5 mm year-1. Intensive peat accumulation continued in the Boreal and early Atlantic. The geocryological complex of polygonal peatlands has remained a stable bog system despite the predicted warming and increasing humidity. However, a rather rapid upper permafrost degradation and irreversible changes in the bog systems of polygonal peatlands occur with anthropogenic disturbances, in particular, a change in the natural hydrological regime under construction of linear objects.

4.
Sci Rep ; 11(1): 18878, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556734

RESUMO

The concentrations of 15 individual PAHs in 93 peat cores have been determined by using high-performance liquid chromatography methods. In the profile the qualitative and quantitative composition of PAHs was non-uniform estimated in a wide range: from 112 to 3673 ng/g with mean 1214 ± 794 ng/g. Among 15 identified individual PAHs, the main contribution to their total amount was made by heavy highly condensed PAHs in the Eastern European peat plateaus, in particular, 6-nuclear benzo[ghi]perylene (1021 ± 707 ng/g), whereas in West Siberian permafrost peatlands, light PAHs were dominating, mostly naphthalene and phenanthrene (211 ± 87 and 64 ± 25 ng/g, respectively). The grass-equisetum peat contained the maximum of heavy PAHs and the dwarf shrub-grass-the minimum. In grass-dwarf shrub, grass-moss and moss peat, the share of 2-nuclear PAHs was most significant: naphthalene and fluorene, as well as 6-nuclear benzo[ghi]perylene. The presence of benzo[ghi]perylene in the entire peat strata, including its permafrost layer, was a marker of the anaerobic conditions that persisted throughout the Holocene and they were necessary for the synthesis of this compound.

5.
Ecohealth ; 18(2): 217-228, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34453636

RESUMO

In 2016, an outbreak of anthrax killing thousands of reindeer and affecting dozens of humans occurred on the Yamal peninsula, Northwest Siberia, after 70 years of epidemiological situation without outbreaks. The trigger of the outbreak has been ascribed to the activation of spores due to permafrost thaw that was accelerated during the summer heat wave. The focus of our study is on the dynamics of local environmental factors in connection with the observed anthrax revival. We show that permafrost was thawing rapidly for already 6 years before the outbreak. During 2011-2016, relatively warm years were followed by cold years with a thick snow cover, preventing freezing of the soil. Furthermore, the spread of anthrax was likely intensified by an extremely dry summer of 2016. Concurrent with the long-term decreasing trend in the regional annual precipitation, the rainfall in July 2016 was less than 10% of its 30-year mean value. We conclude that epidemiological situation of anthrax in the previously contaminated Arctic regions requires monitoring of climatic factors such as warming and precipitation extremes.


Assuntos
Antraz , Antraz/epidemiologia , Antraz/veterinária , Regiões Árticas , Surtos de Doenças/veterinária , Humanos , Federação Russa/epidemiologia , Sibéria/epidemiologia
6.
Nat Commun ; 10(1): 264, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651568

RESUMO

Permafrost warming has the potential to amplify global climate change, because when frozen sediments thaw it unlocks soil organic carbon. Yet to date, no globally consistent assessment of permafrost temperature change has been compiled. Here we use a global data set of permafrost temperature time series from the Global Terrestrial Network for Permafrost to evaluate temperature change across permafrost regions for the period since the International Polar Year (2007-2009). During the reference decade between 2007 and 2016, ground temperature near the depth of zero annual amplitude in the continuous permafrost zone increased by 0.39 ± 0.15 °C. Over the same period, discontinuous permafrost warmed by 0.20 ± 0.10 °C. Permafrost in mountains warmed by 0.19 ± 0.05 °C and in Antarctica by 0.37 ± 0.10 °C. Globally, permafrost temperature increased by 0.29 ± 0.12 °C. The observed trend follows the Arctic amplification of air temperature increase in the Northern Hemisphere. In the discontinuous zone, however, ground warming occurred due to increased snow thickness while air temperature remained statistically unchanged.

7.
Glob Chang Biol ; 24(11): 5188-5204, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30101501

RESUMO

Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO2 ) and methane (CH4 ) fluxes for the dominant land cover types in a ~100-km2 sub-Arctic tundra region in northeast European Russia for the period of 2006-2015 using process-based biogeochemical models. Modeled net annual CO2 fluxes ranged from -300 g C m-2  year-1 [net uptake] in a willow fen to 3 g C m-2  year-1 [net source] in dry lichen tundra. Modeled annual CH4 emissions ranged from -0.2 to 22.3 g C m-2  year-1 at a peat plateau site and a willow fen site, respectively. Interannual variability over the decade was relatively small (20%-25%) in comparison with variability among the land cover types (150%). Using high-resolution land cover classification, the region was a net sink of atmospheric CO2 across most land cover types but a net source of CH4 to the atmosphere due to high emissions from permafrost-free fens. Using a lower resolution for land cover classification resulted in a 20%-65% underestimation of regional CH4 flux relative to high-resolution classification and smaller (10%) overestimation of regional CO2 uptake due to the underestimation of wetland area by 60%. The relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites because wetlands were hot spots for C cycling in Arctic tundra ecosystems.


Assuntos
Ciclo do Carbono , Tundra , Regiões Árticas , Carbono , Dióxido de Carbono/análise , Ecossistema , Metano/análise , Federação Russa , Solo , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA