Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
BMC Med Genet ; 21(1): 138, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32600357

RESUMO

BACKGROUND: Dihidropyrimidinase (DHP) deficiency is an inherited inborn error of pyrimidine metabolism with a variable clinical presentation and even asymptomatic subjects. Dihydropyrimidinase is encoded by the DPYS gene, thus pathogenic mutations in this gene can cause DHP deficiency. To date, several variations in the DPYS gene have been reported but only 23 of them have been confirmed to be pathogenic. Therefore, the biochemical, clinical and genetic aspects of this disease are still unclear. CASE PRESENTATION: Here, we report a 22-year-old woman with DHP deficiency. To identify the genetic cause of DHP deficiency in this patient, Whole Exome Sequencing (WES) was performed, which revealed a novel homozygote stop gain mutation (NM_001385: Exon 9, c.1501 A > T, p.K501X) in the DPYS gene. Sanger sequencing was carried out on proband and other family members in order to confirm the identified mutation. According to the homozygote genotype of the patient and heterozygote genotype of her parents, the autosomal recessive pattern of inheritance was confirmed. In addition, bioinformatics analysis of the identified variant using Mutation Taster and T-Coffee Multiple Sequence Alignment showed the pathogenicity of mutation. Moreover, mRNA expression level of DPYS gene in the proband's liver biopsy showed about 6-fold reduction compared to control, which strongly suggested the pathogenicity of the identified mutation. CONCLUSIONS: This study identified a novel pathogenic stop gain mutation in DPYS gene in a DHP deficient patient. Our findings can improve the knowledge about the genetic basis of the disease and also provide information for accurate genetic counseling for the families at risk of these types of disorders.


Assuntos
Amidoidrolases/genética , Códon sem Sentido/genética , Erros Inatos do Metabolismo/enzimologia , Erros Inatos do Metabolismo/genética , Mutação/genética , Amidoidrolases/química , Sequência de Aminoácidos , Sequência de Bases , Feminino , Regulação Enzimológica da Expressão Gênica , Humanos , Masculino , Linhagem , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Adulto Jovem
3.
BMC Med Genet ; 20(1): 167, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664948

RESUMO

BACKGROUND: Mitochondrial DNA depletion syndromes (MDS) are clinically and phenotypically heterogeneous disorders resulting from nuclear gene mutations. The affected individuals represent a notable reduction in mitochondrial DNA (mtDNA) content, which leads to malfunction of the components of the respiratory chain. MDS is classified according to the type of affected tissue; the most common type is hepatocerebral form, which is attributed to mutations in nuclear genes such as DGUOK and MPV17. These two genes encode mitochondrial proteins and play major roles in mtDNA synthesis. CASE PRESENTATION: In this investigation patients in three families affected by hepatocerebral form of MDS who were initially diagnosed with tyrosinemia underwent full clinical evaluation. Furthermore, the causative mutations were identified using next generation sequencing and were subsequently validated using sanger sequencing. The effect of the mutations on the gene expression was also studied using real-time PCR. A pathogenic heterozygous frameshift deletion mutation in DGUOK gene was identified in parents of two affected patients (c.706-707 + 2 del: p.k236 fs) presenting with jaundice, impaired fetal growth, low-birth weight, and failure to thrive who died at the age of 3 and 6 months in family I. Moreover, a novel splice site mutation in MPV17 gene (c.461 + 1G > C) was identified in a patient with jaundice, muscle weakness, and failure to thrive who died due to hepatic failure at the age of 4 months. A 5-month-old infant presenting with jaundice, dark urine, poor sucking, and feeding problems was also identified to have another novel mutation in MPV17 gene leading to stop gain mutation (c.277C > T: p.(Gln93*)). CONCLUSIONS: These patients had overlapping clinical features with tyrosinemia. MDS should be considered a differential diagnosis in patients presenting with signs and symptoms of tyrosinemia.


Assuntos
DNA Mitocondrial/genética , Doenças Mitocondriais/genética , DNA Mitocondrial/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Lactente , Masculino , Mutação , Linhagem , Síndrome , Sequenciamento do Exoma
4.
Sci Rep ; 8(1): 8375, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29849103

RESUMO

Herein, we have investigated the toxicity of SWCNTs and MWCNTs in vitro and in vivo, and assessed their therapeutic effects on a typical animal model of breast cancer in order to obtain: first, the cytotoxicity effects of CNTs on MC4L2 cell and mice, second the impact of CNTs on ablation of breast tumor. CNTs especially SWCNTs were toxic to organs and induced death at high dosages. In this case, some of the liver cells showed a relative shrinkage which was also confirmed by Annexin test in MC4L2 cells. Moreover, CNTs decreased the tumor volume. BCL2 gene was down-regulated, and BAX and Caspase-3 were also up-regulated in the treated groups with CNTs. As a result, CNTs especially MWCNT in lower dosages can be used as a promising drug delivery vehicle for targeted therapy of abnormal cells in breast cancer.


Assuntos
Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Nanotubos de Carbono/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Carga Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...