Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Neuromolecular Med ; 26(1): 16, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668900

RESUMO

Toll-like receptor (TLR) 7 plays an important role in recognizing virus-derived nucleic acids. TLR7 signaling in astrocytes and microglia is critical for activating immune responses against neurotrophic viruses. Neurons express TLR7, similar to glial cells; however, the role of neuronal TLR7 has not yet been fully elucidated. This study sought to determine whether resiquimod, the TLR7/8 agonist, induces the expression of inflammatory chemokines in SH-SY5Y human neuroblastoma cells. Immunofluorescence microscopy revealed that TLR7 was constitutively expressed in SH-SY5Y cells. Stimulation with resiquimod induced C-C motif chemokine ligand 2 (CCL2) expression, accompanied by the activation of nuclear factor-kappa B (NF-κB) in SH-SY5Y cells. Resiquimod increased mRNA levels of C-X-C motif chemokine ligand 8 (CXCL8) and CXCL10, while the increase was slight at the protein level. Knockdown of NF-κB p65 eliminated resiquimod-induced CCL2 production. This study provides novel evidence that resiquimod has promising therapeutic potential against central nervous system viral infections through its immunostimulatory effects on neurons.


Assuntos
Quimiocina CCL2 , Quimiocina CXCL10 , Imidazóis , Interleucina-8 , Receptor 7 Toll-Like , Fator de Transcrição RelA , Humanos , Linhagem Celular Tumoral , Quimiocina CCL2/genética , Quimiocina CCL2/biossíntese , Quimiocina CXCL10/genética , Quimiocina CXCL10/biossíntese , Imidazóis/farmacologia , Interleucina-8/genética , Interleucina-8/biossíntese , Neuroblastoma , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , NF-kappa B/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/genética , Receptor 8 Toll-Like/agonistas , Receptor 8 Toll-Like/genética , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelA/genética
2.
Chemistry ; : e202400618, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570328

RESUMO

Sulfur-coordinated coordination polymers (S-CPs) have unique optoelectrical properties that originate from infinite M-S bond networks. In this study, we synthesized and characterized two polymorphs of a two-dimensional (2D) Pb(II) S-CP with a formula of [Pb(tzdt)(OAc)] (Htzdt=1,3-thiazolidine-2-thione, OAc=acetate). Our findings revealed that the thermodynamic product (KGF-26) possesses quasi-2D (-Pb-S-)n layers with weak nonbonded Pb-S bonds, whereas the kinetic product (KGF-27) has intrinsic 2D (-Pb-S-)n layers with Pb-S bonds. The results of time-resolved microwave conductivity measurements and first-principles calculations confirmed that KGF-27 exhibits higher photoconductivity than KGF-26, which establishes that the inorganic (-Pb-S-)n networks with Pb-S bonds are crucial for achieving high photoconductivity. This is the first experimental demonstration of the impact of the (-M-S-)n networks in S-CPs on photoconductivity through the comparison of crystal polymorphisms.

3.
Mol Biol Rep ; 51(1): 417, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483660

RESUMO

BACKGROUND: Bronchial epithelial cells are at the front line of viral infections. Toll-like receptor 3 (TLR3) cascade causes the expression of interferon (IFN)-ß and IFN-stimulated genes (ISGs), which in turn induce an antiviral response. Members of the transmembrane protein (TMEM) family are expressed in various cell types. Although the prognostic value of TMEM2 in various cancers has been reported, its association with infectious diseases remains unknown. In this study, we investigated the effects of TMEM2 on antiviral immunity in BEAS-2B bronchial epithelial cells. METHODS AND RESULTS: TMEM2 protein was found in the cytoplasm of normal human bronchial epithelial cells and differed between organs using immunohistochemistry. Cultured BEAS-2B cells were transfected with TMEM2 siRNA, followed by administration of TLR3 ligand polyinosinic-polycytidylic acid (poly IC) or recombinant human (r(h)) IFN-ß. The expression of TMEM2, IFN-ß, ISG56, C-X-C motif chemokine ligand 10 (CXCL10) and hyaluronan were evaluated appropriately by western blotting, quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. TMEM2 expression was not altered by poly IC stimulation. Knockdown of TMEM2 increased poly IC-induced expression of IFN-ß, CXCL10, and ISG56, while IFN-ß-induced expression of ISG56 and CXCL10 were not changed by TMEM2 knockdown. The hyaluronan concentration in the medium was decreased by either TMEM2 knockdown or poly IC, but additive or synergistic effects were not observed. CONCLUSIONS: TMEM2 knockdown enhanced TLR3-mediated IFN-ß, CXCL10, and ISG56 expression in BEAS-2B cells. This implies that TMEM2 suppresses antiviral immune responses and prevents tissue injury in bronchial epithelial cells.


Assuntos
Ácido Hialurônico , Receptor 3 Toll-Like , Humanos , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Ligantes , Poli I-C/farmacologia , Células Epiteliais/metabolismo , Células Cultivadas , Quimiocina CXCL10/genética
4.
J Synchrotron Radiat ; 31(Pt 2): 343-354, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38372672

RESUMO

Recently, there has been a high demand for elucidating kinetics and visualizing reaction processes under extreme dynamic conditions, such as chemical reactions under meteorite impact conditions, structural changes under nonequilibrium conditions, and in situ observations of dynamic changes. To accelerate material science studies and Earth science fields under dynamic conditions, a submillisecond in situ X-ray diffraction measurement system has been developed using a diamond anvil cell to observe reaction processes under rapidly changing pressure and temperature conditions replicating extreme dynamic conditions. The development and measurements were performed at the high-pressure beamline BL10XU/SPring-8 by synchronizing a high-speed hybrid pixel array detector, laser heating and temperature measurement system, and gas-pressure control system that enables remote and rapid pressure changes using the diamond anvil cell. The synchronized system enabled momentary heating and rapid cooling experiments up to 5000 K via laser heating as well as the visualization of structural changes in high-pressure samples under extreme dynamic conditions during high-speed pressure changes.

5.
J Pharmacol Sci ; 154(3): 157-165, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395516

RESUMO

For the treatment and prevention of autoinflammatory diseases, it is essential to develop the drug, regulating the innate immune system. Although differentiation-inducing factor (DIF) derivatives, extracted from the cellular slime mold, Dictyostelium discoideum, exhibit immunomodulatory effects, their effects on the regulation of innate immunity in brain are unknown. In this study, we used the human cerebral microvascular endothelial cell line, hCMEC/D3, to investigate the effects of DIF derivatives on the generation of C-X-C motif chemokine (CXCL) 10 and interferon (IFN)-ß induced by polyinosinic-polycytidylic acid (poly IC). DIF-3 (1-10 µM), but not DIF-1 and DIF-2, dose-dependently inhibited the biosynthesis of not only CXCL10 but also CXCL16 and C-C motif chemokine 2 induced by poly IC. DIF-3 also strongly decreased IFN-ß mRNA expression and protein release from the cells induced by poly IC through the prohibition of p65, a subtype of NF-ĸB, not interferon regulatory transcription factor 3 phosphorylation. In the docking simulation study, we confirmed that DIF-3 had a high affinity to p65. These results suggest that DIF-3 regulates the innate immune system by inhibiting TLR3/IFN-ß signaling axis through the NF-ĸB phosphorylation inhibition.


Assuntos
Dictyostelium , Poli I-C , Humanos , Poli I-C/farmacologia , Células Endoteliais/metabolismo , NF-kappa B/metabolismo , Imunidade Inata , Quimiocinas/metabolismo , Quimiocinas/farmacologia
6.
Angew Chem Int Ed Engl ; 63(14): e202400162, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339815

RESUMO

Ladder systems situated in the dimensional crossover region have attracted much attention because their electronic states and physical properties depend strongly on the electronic correlations among the constituent legs. Generally, two-/three-legged transition metal-oxide ladder compounds are studied as representative ladder systems, but two-/three-dimensional (2D/3D) extensions based on such ladder systems with a few numbers of legs are difficult because of the extreme synthesis conditions. Here, for the first time, we report the successful creation of a 3D extended two-legged ladder compound, [Pt(en)(dpye)I]2(NO3)4 ⋅ 2H2O (en=ethylenediamine; dpye=1,2-Di(4-pyridyl)ethane), which is obtained by simple oxidative polymerization of a small Pt macrocyclic complex using elemental I2. The unique 3D extended lattice consists of 1D mixed-valence halogen-bridged metal chains (⋅⋅⋅Pt-I-Pt-I⋅⋅⋅) and helically arranged macrocyclic units as the constituent legs and rungs, as confirmed by single-crystal X-ray diffraction. Diffuse X-ray scattering analyses and optical measurements revealed that the out-of-phase mixed-valence Pt2+/Pt4+ arrangement arises from the weak interchain correlation among adjacent legs. In addition, this compound shows an increase in proton conductivity by a factor of up to 1000, depending on humidity.

7.
Mol Biol Rep ; 51(1): 131, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236450

RESUMO

BACKGROUND: Innate immunity is known to be implicated in the etiology of synovitis in rheumatoid arthritis (RA). However, details of the molecular mechanisms have not been fully clarified. DExD/H-box helicase 60 (DDX60), a putative RNA helicase, is of consequence in anti-viral innate immune reactions followed by inflammation. Although DDX60 is involved in the pathogenesis of autoimmune diseases such as systemic lupus nephritis, the role of DDX60 in RA has not been elucidated. The objective of this study was to examine the expression and the role of DDX60 in RA synovial inflammation. METHODS AND RESULTS: DDX60 protein expression was investigated by immunohistochemistry in synovial tissues resected from 4 RA and 4 osteoarthritis (OA) patients. We found that synovial DDX60 expression was more intense in RA than in OA. Treatment of human rheumatoid fibroblast-like synoviocytes in culture with polyinosinic-polycytidylic acid, a Toll-like receptor 3 (TLR3) ligand, increased DDX60 protein and mRNA expression. A knockdown experiment of DDX60 using RNA interference revealed a decrease in the expression of poly IC-induced C-X-C motif chemokine ligand 10 (CXCL10) which induces lymphocyte chemotaxis. CONCLUSIONS: The synovial DDX60 was more expressed in RA patients than in OA. In human RFLS, DDX60 stimulated by TLR3 signaling affected CXCL10 expression. DDX60 may contribute to synovial inflammation in RA.


Assuntos
Artrite Reumatoide , RNA Helicases DEAD-box , Nefrite Lúpica , Osteoartrite , Humanos , Artrite Reumatoide/genética , Inflamação , Ligantes , Osteoartrite/genética , Receptor 3 Toll-Like/genética , RNA Helicases DEAD-box/genética
8.
J Am Chem Soc ; 146(1): 773-781, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38148506

RESUMO

We report the observation of superconductivity in (Pt0.2Ir0.8)3Zr5 with a chiral space group (P6122) at low temperatures. The bulk nature of the superconductivity at a transition temperature of 2.2 K was confirmed using specific heat measurements. We revealed that (Pt0.2Ir0.8)3Zr5 obeys the weak-coupling Bardeen-Cooper-Schrieffer model, and the dominant mechanism in the upper critical field is the orbital pair-breaking limit rather than the Pauli-Clogston limit. This indicates that the antisymmetric spin-orbit coupling caused by the chiral crystal structure does not significantly affect the superconductivity of (Pt0.2Ir0.8)3Zr5.

9.
J Am Chem Soc ; 146(1): 181-186, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38153046

RESUMO

High-entropy oxide nanoparticles (HEO NPs) have been intensively studied because of their attractive properties, such as high stability and enhanced catalytic activity. In this work, for the first time, denary HEO NPs were successfully synthesized using a continuous supercritical hydrothermal flow process without calcination. Interestingly, this process allows the formation of HEO NPs on the order of seconds at a relatively lower temperature. The synthesized HEO NPs contained 10 metal elements, La, Ca, Sr, Ba, Fe, Mn, Co, Ru, Pd, and Ir, and had a perovskite-type structure. Atomic-resolution high-angle annular dark-field scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy measurements revealed homogeneous dispersion of the 10 metal elements. The obtained HEO NPs also exhibited a higher catalytic activity for the CO oxidation reaction than that of the LaFeO3 NPs.

10.
Nat Commun ; 14(1): 6862, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938232

RESUMO

Flexible metal-organic frameworks (MOFs) exhibiting adsorption-induced structural transition can revolutionise adsorption separation processes, including CO2 separation, which has become increasingly important in recent years. However, the kinetics of this structural transition remains poorly understood despite being crucial to process design. Here, the CO2-induced gate opening of ELM-11 ([Cu(BF4)2(4,4'-bipyridine)2]n) is investigated by time-resolved in situ X-ray powder diffraction, and a theoretical kinetic model of this process is developed to gain atomistic insight into the transition dynamics. The thus-developed model consists of the differential pressure from the gate opening (indicating the ease of structural transition) and reaction model terms (indicating the transition propagation within the crystal). The reaction model of ELM-11 is an autocatalytic reaction with two pathways for CO2 penetration of the framework. Moreover, gas adsorption analyses of two other flexible MOFs with different flexibilities indicate that the kinetics of the adsorption-induced structural transition is highly dependent on framework structure.

11.
J Am Chem Soc ; 145(44): 24005-24011, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37883673

RESUMO

Technetium (Tc), atomic number 43, is an element that humans cannot freely use even in the 21st century because Tc is radioactive and has no stable isotope. In this report, we present molybdenum-ruthenium-carbon solid-solution alloy (MoxRu1-xCy) nanoparticles (NPs) that are expected to have an electronic structure similar to that of technetium carbide (TcCy). MoxRu1-xCy NPs were synthesized by annealing under a helium/hydrogen atmosphere following thermal decomposition of metal precursors. The obtained NPs had a solid-solution structure in the whole composition range. MoxRu1-xCy with a cubic structure (down to 30 atom % Mo in the metal ratio) showed a superconducting state, and the transition temperature (Tc) increased with increasing Mo composition. The continuous change in Tc across that of TcCy indicates the continuous control of the electronic structure by solid-solution alloying, leading to pseudo-TcCy. Density functional theory calculations indicated that the synthesized Mo0.53Ru0.47C0.41 has a similar electronic structure to TcC0.41.

12.
Inorg Chem ; 62(44): 18179-18188, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37863841

RESUMO

Transition-metal dichalcogenides (TMDs) have long been attractive to researchers for their diverse properties and high degree of tunability. Most recently, interest in magnetically intercalated TMDs has resurged due to their potential applications in spintronic devices. While certain compositions featuring the absence of inversion symmetry such as Fe1/3NbS2 and Cr1/3NbS2 have garnered the most attention, the diverse compositional space afforded through the host matrix composition as well as intercalant identity and concentration is large and remains relatively underexplored. Here, we report the magnetic ground state of Fe1/4NbS2 that was determined from low-temperature neutron powder diffraction as an A-type antiferromagnet. Despite the presence of overall inversion symmetry, the pristine compound manifests spin polarization induced by the antiferromagnetic order at generic k points, based on density functional theory band-structure calculations. Furthermore, by combining synchrotron diffraction, pair distribution function, and magnetic susceptibility measurements, we find that the magnetic properties of Fe1/4NbS2 are sensitive to the Fe site order, which can be tuned via electrochemical lithiation and thermal history.

13.
Chem Asian J ; 18(21): e202300727, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37752095

RESUMO

A highly dispersed carbonate-intercalated Cu2+ -Al3+ layered double hydroxide (CuAl LDH) was created on an unreactive α-Al2 O3 surface (CuAl LDH@α-Al2 O3 ) via a simple coprecipitation method of Cu2+ and Al3+ under alkaline conditions in the presence of α-Al2 O3 . A highly reducible CuO nanoparticles was generated, accompanied by the formation of CuAl2 O4 on the surface of α-Al2 O3 (CuAlO@α-Al2 O3 ) after calcination at 1073 K in air, as confirmed by powder X-ray diffraction (XRD) and Cu K-edge X-ray absorption near edge structure (XANES). The structural changes during the progressive heating process were monitored by using in-situ temperature-programmed synchrotron XRD (tp-SXRD). The layered structure of CuAl LDH@α-Al2 O3 completely disappeared at 473 K, and CuO or CuAl2 O4 phases began to appear at 823 K or 1023 K, respectively. Our synthesised CuAlO@α-Al2 O3 catalyst was highly active for the acceptorless dehydrogenation of benzylic, aliphatic, or cyclic aliphatic alcohols; the TON based on the amount of Cu increased to 163 from 3.3 of unsupported CuAlO catalyst in 1-phenylethanol dehydrogenation. The results suggested that Cu0 was obtained from the reduction of CuO in the catalyst matrix during the reaction without separate reduction procedure and acted as a catalytically active species.

14.
Proc Natl Acad Sci U S A ; 120(40): e2305125120, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37748051

RESUMO

Conductive metal-organic frameworks (cMOFs) manifest great potential in modern electrical devices due to their porous nature and the ability to conduct charges in a regular network. cMOFs applied in electrical devices normally hybridize with other materials, especially a substrate. Therefore, the precise control of the interface between cMOF and a substrate is particularly crucial. However, the unexplored interface chemistry of cMOFs makes the controlled synthesis and advanced characterization of high-quality thin films, particularly challenging. Herein, we report the development of a simplified synthesis method to grow "face-on" and "edge-on" cMOF nanofilms on substrates, and the establishment of operando characterization methodology using atomic force microscopy and X-ray, thereby demonstrating the relationship between the soft structure of surface-mounted oriented networks and their characteristic conductive functions. As a result, crystallinity of cMOF nanofilms with a thickness down to a few nanometers is obtained, the possible growth mechanisms are proposed, and the interesting anisotropic softness-dependent conducting properties (over 2 orders of magnitude change) of the cMOF are also illustrated.

15.
Sci Rep ; 13(1): 14349, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699922

RESUMO

Clarifying dynamic processes of materials is an important research topic in materials science. Time-resolved X-ray diffraction is a powerful technique for probing dynamic processes. To understand the dynamics, it is essential to analyze time-series data using appropriate time-evolution models and accurate start times of dynamic processes. However, conventional analyses based on non-linear least-squares fitting have difficulty both evaluating time-evolution models and estimating start times. Here, we establish a Bayesian framework including time-evolution models. We investigate an adsorption process, which is a representative dynamic process, and extract information about the time-evolution model and adsorption start time. The information enables us to estimate adsorption properties such as rate constants more accurately, thus achieving more precise understanding of dynamic adsorption processes. Our framework is highly versatile, can be applied to other dynamic processes such as chemical reactions, and is expected to be utilized in various areas of materials science.

16.
Angew Chem Int Ed Engl ; 62(39): e202308438, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37534579

RESUMO

Porous sorbents are materials that are used for various applications, including storage and separation. Typically, the uptake of a single gas by a sorbent decreases with temperature, but the relative affinity for two similar gases does not change. However, in this study, we report a rare example of "crossover sorption," in which the uptake capacity and apparent affinity for two similar gases reverse at different temperatures. We synthesized two soft porous coordination polymers (PCPs), [Zn2 (L1)(L2)2 ]n (PCP-1) and [Zn2 (L1)(L3)2 ]n (PCP-2) (L1= 1,4-bis(4-pyridyl)benzene, L2=5-methyl-1,3-di(4-carboxyphenyl)benzene, and L3=5-methoxy-1,3-di(4-carboxyphenyl)benzene). These PCPs exhibits structural changes upon gas sorption and show the crossover sorption for both C2 H2 /CO2 and C2 H6 /C2 H4 , in which the apparent affinity reverse with temperature. We used in situ gas-loading single-crystal X-ray diffraction (SCXRD) analysis to reveal the guest inclusion structures of PCP-1 for C2 H2 , CO2 , C2 H6 , and C2 H4 gases at various temperatures. Interestingly, we observed three-step single-crystal to single-crystal (sc-sc) transformations with the different loading phases under these gases, providing insight into guest binding positions, nature of host-guest or guest-guest interactions, and their phase transformations upon exposure to these gases. Combining with theoretical investigation, we have fully elucidated the crossover sorption in the flexible coordination networks, which involves a reversal of apparent affinity and uptake of similar gases at different temperatures. We discovered that this behaviour can be explained by the delicate balance between guest binding and host-guest and guest-guest interactions.

18.
Chem Commun (Camb) ; 59(62): 9485-9488, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37439509

RESUMO

We first report the synthesis of B2-structured indium-platinum group metal high-entropy intermetallic nanoparticles (In-PGM HEI NPs). The synthesis was achieved by a wet-chemistry method and subsequent heat treatment. The crystal structure of these NPs is unique in the coexistence of completely orderly arranged indium and disorderly arranged PGMs.

19.
Nat Commun ; 14(1): 4245, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454124

RESUMO

Developing artificial porous systems with high molecular recognition performance is critical but very challenging to achieve selective uptake of a particular component from a mixture of many similar species, regardless of the size and affinity of these competing species. A porous platform that integrates multiple recognition mechanisms working cooperatively for highly efficient guest identification is desired. Here, we designed a flexible porous coordination polymer (PCP) and realised a corrugated channel system that cooperatively responds to only target gas molecules by taking advantage of its stereochemical shape, location of binding sites, and structural softness. The binding sites and structural deformation act synergistically, exhibiting exclusive discrimination gating (EDG) effect for selective gate-opening adsorption of CO2 over nine similar gas molecules, including N2, CH4, CO, O2, H2, Ar, C2H6, and even higher-affinity gases such as C2H2 and C2H4. Combining in-situ crystallographic experiments with theoretical studies, it is clear that this unparalleled ability to decipher the CO2 molecule is achieved through the coordination of framework dynamics, guest diffusion, and interaction energetics. Furthermore, the gas co-adsorption and breakthrough separation performance render the obtained PCP an efficient adsorbent for CO2 capture from various gas mixtures.


Assuntos
Dióxido de Carbono , Gases , Adsorção , Sítios de Ligação , Transporte Biológico
20.
J Am Chem Soc ; 145(31): 17136-17142, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37471524

RESUMO

Multielement alloy nanoparticles have attracted much attention due to their attractive catalytic properties derived from the multiple interactions of adjacent multielement atoms. However, mixing multiple elements in ultrasmall nanoparticles from a wide range of elements on the periodic table is still challenging because the elements have different properties and miscibility. Herein, we developed a benchtop 4-way flow reactor for chemical synthesis of ultra-multielement alloy (UMEA) nanoparticles composed of d-block and p-block elements. BiCoCuFeGaInIrNiPdPtRhRuSbSnTi 15-element alloy nanoparticles composed of group IV to XV elements were synthesized by sequential injection of metal precursors using the reactor. This methodology realized the formation of UMEA nanoparticles at low temperature (66 °C), resulting in a 1.9 nm ultrasmall average particle size. The UMEA nanoparticles have high durability and activity for electrochemical alcohol oxidation reactions and high tolerance to CO poisoning. These results suggest that the multiple interactions of UMEA efficiently promote the multistep alcohol oxidation reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...