Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 7(16): 22779-90, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26988911

RESUMO

We previously reported that ATP7B is involved in cisplatin resistance and ATP7A confers multidrug resistance (MDR) in cancer cells.In this study, we show that ATP7B expressing cells also are resistant to doxorubicin, SN-38, etoposide, and paclitaxel as well as cisplatin.In ATP7B expressing cells, doxorubicin relocated from the nuclei to the late-endosome at 4 hours after doxorubicin exposure. EGFP-ATP7B mainly colocalized with doxorubicin.ATP7B has six metal binding sites (MBSs) in the N-terminal cytoplasmic region. To investigate the role of the MBSs of ATP7B in doxorubicin resistance, we used three mutant ATP7B (Cu0, Cu6 and M6C/S) expressing cells. Cu0 has no MBSs, Cu6 has only the sixth MBS and M6C/S carries CXXC to SXXS mutation in the sixth MBS. Cu6 expressing cells were less resistance to the anticancer agents than wild type ATP7B expressing cells, and had doxorubicin sequestration in the late-endosome. Cu0- and M6C/S-expressing cells were sensitive to doxorubicin. In these cells, doxorubicin did not relocalize to the late-endosome. EGFP-M6C/S mainly localized to the trans-Golgi network (TGN) even in the presence of copper. Thus the cysteine residues in the sixth MBS of ATP7B are essential for MDR phenotype.Finally, we found that ammonium chloride and tamoxifen suppressed late endosomal sequestration of doxorubicin, thereby attenuating drug resistance. These results suggest that the sequestration depends on the acidity of the vesicles partly.We here demonstrate that ATP7B confers MDR by facilitating nuclear drug efflux and late endosomal drug sequestration.


Assuntos
Antineoplásicos/metabolismo , ATPases Transportadoras de Cobre/metabolismo , Resistência a Múltiplos Medicamentos/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Linhagem Celular Tumoral , Humanos
2.
J Pharmacol Sci ; 127(3): 319-25, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25837929

RESUMO

Gemcitabine is widely used for pancreatic, lung, and bladder cancer. However, drug resistance against gemcitabine is a large obstacle to effective chemotherapy. Nucleoside transporters, nucleoside and nucleotide metabolic enzymes, and efflux transporters have been reported to be involved in gemcitabine resistance. Although most of the resistant factors are supposed to be related to each other, it is unclear how one factor can affect the other one. In this study, we established gemcitabine-resistant pancreatic cancer cell lines. Gemcitabine resistance in these cells is caused by two major processes: a decrease in gemcitabine uptake and overexpression of ribonucleotide reductase large subunit (RRM1). Knockdown of RRM1, but not the overexpression of concentrative nucleoside transporter 1 (CNT1), could completely overcome the gemcitabine resistance. RRM1 knockdown in gemcitabine-resistant cells could increase the intracellular accumulation of gemcitabine by increasing the nucleoside transporter expression. Furthermore, a synergistic effect was observed between hydroxyurea, a ribonucleotide reductase (RR) inhibitor, and gemcitabine on the gemcitabine-resistant cells. Here we indicate that RR is one of the most promising targets to overcome gemcitabine resistance in gemcitabine-resistant cells with dual resistant factors.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores Enzimáticos/farmacologia , Neoplasias Pancreáticas/patologia , Ribonucleotídeo Redutases/antagonistas & inibidores , Ribonucleotídeo Redutases/fisiologia , Desoxicitidina/metabolismo , Desoxicitidina/farmacologia , Inibidores Enzimáticos/metabolismo , Humanos , Neoplasias Pancreáticas/metabolismo , Células Tumorais Cultivadas , Gencitabina
3.
Anticancer Res ; 34(9): 4767-73, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25202056

RESUMO

A previously established arsenite-resistant cell line, KAS, is also resistant to a variety of anticancer drugs. In order to understand responsible molecules for the multidrug resistance phenotype of KAS cells, we examined the expressions of ATP-binding cassette (ABC) transporters and found that the ABCB6 and ABCC1/ multidrug resistance protein 1 (ABCC1/MRP1) were increased. ABCC1/MRP1 was not completely responsible for the drug resistance spectrum of KAS cells and several reports have suggested that ABCB6 is related to anticancer drug and metal resistance. We, therefore, established and examined ABCB6-expressing KB cells and ABCB6-knockdown KAS cells. ABCB6 expression enhanced resistance to 5-fluorouracil (5-FU), SN-38 and vincristine (Vcr) but not to arsenite. Conversely, down-regulation of ABCB6 in KAS cells increased the sensitivity of KAS cells to 5-FU, SN-38 and Vcr, but not to arsenite. Our findings suggest that ABCB6 is involved in 5-FU, SN-38 and Vcr resistance.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Camptotecina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/farmacologia , Expressão Gênica , Vincristina/farmacologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Camptotecina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Irinotecano , Células KB , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA