Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38361142

RESUMO

Glycoprotein non-metastatic melanoma protein B (GPNMB) is up-regulated in one subtype of microglia (MG) surrounding senile plaque depositions of amyloid-beta (Aß) peptides. However, whether the microglial GPNMB can recognize the fibrous Aß peptides as ligands remains unknown. In this study, we report that the truncated form of GPNMB, the antigen for 9F5, serves as a scavenger receptor for oligomeric Aß1-42 (o-Aß1-42 ) in rat primary type 1 MG. 125 I-labeled o-Aß1-42 exhibited specific and saturable endosomal/lysosomal degradation in primary-cultured type 1 MG from GPNMB-expressing wild-type mice, whereas the degradation activity was markedly reduced in cells from Gpnmb-knockout mice. The Gpnmb-siRNA significantly inhibits the degradation of 125 I-o-Aß1-42 by murine microglial MG5 cells. Therefore, GPNMB contributes to mouse MG's o-Aß1-42 clearance. In rat primary type 1 MG, the cell surface expression of truncated GPNMB was confirmed by a flow cytometric analysis using a previously established 9F5 antibody. 125 I-labeled o-Aß1-42 underwent endosomal/lysosomal degradation by rat primary type 1 MG in a dose-dependent fashion, while the 9F5 antibody inhibited the degradation. The binding of 125 I-o-Aß1-42 to the rat primary type 1 MG was inhibited by 42% by excess unlabeled o-Aß1-42 , and by 52% by the 9F5 antibody. Interestingly, the 125 I-o-Aß1-42 degradations by MG-like cells from human-induced pluripotent stem cells was inhibited by the 9F5 antibody, suggesting that truncated GPNMB also serve as a scavenger receptor for o-Aß1-42 in human MG. Our study demonstrates that the truncated GPNMB (the antigen for 9F5) binds to oligomeric form of Aß1-42 and functions as a scavenger receptor on MG, and 9F5 antibody can act as a blocking antibody for the truncated GPNMB.

2.
Biochim Biophys Acta Gen Subj ; 1867(3): 130301, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36572257

RESUMO

Our understanding of metabolic reprogramming in cancer has tremendously improved along with the technical progression of metabolomic analysis. Metabolic changes in cancer cells proved much more complicated than the classical Warburg effect. Previous studies have approached metabolic changes as therapeutic and/or chemopreventive targets. Recently, several clinical trials have reported anti-cancer agents associated with metabolism. However, whether cancer cells are dependent on metabolic reprogramming or favor suitable conditions remains nebulous. Both scenarios are possibly intertwined. Identification of downstream molecules and the understanding of mechanisms underlying reprogrammed metabolism can improve the effectiveness of cancer therapy. Here, we review several examples of the metabolic reprogramming of cancer cells and the therapies targeting the metabolism-related molecules as well as discuss practical approaches to improve the next generation of cancer therapies focused on the metabolic reprogramming of cancer.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Glicólise , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Metabolismo Energético , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
3.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36555627

RESUMO

Nucleolar stress response is caused by perturbations in ribosome biogenesis, induced by the inhibition of ribosomal RNA processing and synthesis, as well as ribosome assembly. This response induces p53 stabilization and activation via ribosomal protein L11 (RPL11), suppressing tumor progression. However, anticancer agents that kill cells via this mechanism, and their relationship with the therapeutic efficiency of these agents, remain largely unknown. Here, we sought to investigate whether topoisomerase inhibitors can induce nucleolar stress response as they reportedly block ribosomal RNA transcription. Using rhabdomyosarcoma and rhabdoid tumor cell lines that are sensitive to the nucleolar stress response, we evaluated whether nucleolar stress response is associated with sensitivity to topoisomerase inhibitors ellipticine, doxorubicin, etoposide, topotecan, and anthracyclines. Cell proliferation assay indicated that small interfering RNA-mediated RPL11 depletion resulted in decreased sensitivity to topoisomerase inhibitors. Furthermore, the expression of p53 and its downstream target proteins via western blotting showed the suppression of p53 pathway activation upon RPL11 knockdown. These results suggest that the sensitivity of cancer cells to topoisomerase inhibitors is regulated by RPL11-mediated nucleolar stress responses. Thus, RPL11 expression may contribute to the prediction of the therapeutic efficacy of topoisomerase inhibitors and increase their therapeutic effect of topoisomerase inhibitors.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Ribossômicas/metabolismo , Nucléolo Celular/metabolismo , Linhagem Celular Tumoral , Antibióticos Antineoplásicos/farmacologia , RNA Ribossômico/genética , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/metabolismo , Antraciclinas/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Neoplasias/metabolismo
4.
Biochem Biophys Res Commun ; 637: 203-209, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36403484

RESUMO

Ribosome biogenesis proceeds with the successive cleavage and trimming of the large 47S rRNA precursor, where the RNA exosome plays major roles in concert with the Ski2-like RNA helicase, MTR4. The recent finding of a consensus amino acid sequence, the arch-interacting motif (AIM), for binding to the arch domain in MTR4 suggests that recruitment of the RNA processing machinery to the maturing pre-rRNA at appropriate places and timings is mediated by several adaptor proteins possessing the AIM sequence. In yeast Saccharomyces cerevisiae, Nop53 plays such a role in the maturation of the 3'-end of 5.8S rRNA. Here, we investigated the functions of PICT1 (also known as GLTSCR2 or NOP53), a mammalian ortholog of Nop53, during ribosome biogenesis in human cells. PICT1 interacted with MTR4 and exosome in an AIM-dependent manner. Overexpression of PICT1 mutants defecting AIM sequence and siRNA-mediated depletion of PICT1 showed that PICT1 is involved in two distinct pre-rRNA processing steps during the generation of 60S ribosomes; first step is the early cleavage of 32S intermediate RNA, while the second step is the late maturation of 12S precursor into 5.8S rRNA. The recruitment of MTR4 and RNA exosome via the AIM sequence was required only during the late processing step. Although, the depletion of MTR4 and PICT1 induced stabilization of the tumor suppressor p53 protein in cancer cell lines, the depletion of the exosome catalytic subunits, RRP6 and DIS3, did not exert such an effect. These results suggest that recruitment of the RNA processing machinery to the 3'-end of pre-5.8S rRNA may be involved in the induction of the nucleolar stress response, but the pre-rRNA processing capabilities themselves were not involved in this process.


Assuntos
RNA Helicases , Precursores de RNA , Proteínas Supressoras de Tumor , Humanos , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Proteínas Nucleares , Oligonucleotídeos , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA , RNA Ribossômico 5,8S , RNA Interferente Pequeno , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , RNA Helicases/genética , Proteínas Supressoras de Tumor/genética
5.
Cancers (Basel) ; 14(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36291909

RESUMO

Approximately 20% of pediatric patients with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) relapse or are refractory to chemotherapy despite the low frequency of TP53 mutations. The nucleolar stress response is a P53-activating mechanism via MDM2 inhibition by ribosomal protein L11 (RPL11). We analyzed the role of the nucleolar stress response using BCP-ALL cell lines and patient samples by drug sensitivity tests, Western blotting, and reverse transcription polymerase chain reaction. We revealed that the nucleolar stress response works properly in TP53 wild-type human BCP-ALL cell lines. Next, we found that 6-mercaptopurine, methotrexate, daunorubicin, and cytarabine had anti-leukemic effects via the nucleolar stress response within BCP-ALL treatment. Comparing the samples at onset and relapse in children with BCP-ALL, RPL11 mRNA expression decreased at relapse in seven of nine cases. Furthermore, leukemia cells with relapse acquired resistance to these four drugs and suppressed P53 and RPL11 expression. Our findings suggest that the nucleolar stress response is a novel anti-leukemia mechanism in BCP-ALL. As these four drugs are key therapeutics for BCP-ALL treatment, dysfunction of the nucleolar stress response may be related to clinical relapse or refractoriness. Nucleolar stress response may be a target to predict and improve the chemotherapy effect for pediatric BCP-ALL.

6.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768959

RESUMO

Lung cancer constitutes a threat to human health. BHLHE41 plays important roles in circadian rhythm and cell differentiation as a negative regulatory transcription factor. This study investigates the role of BHLHE41 in lung cancer progression. We analyzed BHLHE41 function via in silico and immunohistochemical studies of 177 surgically resected non-small cell lung cancer (NSCLC) samples and 18 early lung squamous cell carcinoma (LUSC) cases. We also examined doxycycline (DOX)-inducible BHLHE41-expressing A549 and H2030 adenocarcinoma cells. BHLHE41 expression was higher in normal lung than in lung adenocarcinoma (LUAD) tissues and was associated with better prognosis for the overall survival (OS) of patients. In total, 15 of 132 LUAD tissues expressed BHLHE41 in normal lung epithelial cells. Staining was mainly observed in adenocarcinoma in situ and the lepidic growth part of invasive cancer tissue. BHLHE41 expression constituted a favorable prognostic factor for OS (p = 0.049) and cause-specific survival (p = 0.042) in patients with LUAD. During early LUSC, 7 of 18 cases expressed BHLHE41, and this expression was inversely correlated with the depth of invasion. DOX suppressed cell proliferation and increased the autophagy protein LC3, while chloroquine enhanced LC3 accumulation and suppressed cell death. In a xenograft model, DOX suppressed tumor growth. Our results indicate that BHLHE41 expression prevents early lung tumor malignant progression by inducing autophagic cell death in NSCLC.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Células A549 , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Morte Celular Autofágica/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Doxiciclina/farmacologia , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Sci Rep ; 11(1): 8677, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883577

RESUMO

The human AlkB homolog family (ALKBH) of proteins play a critical role in some types of cancer. However, the expression and function of the lysine demethylase ALKBH4 in cancer are poorly understood. Here, we examined the expression and function of ALKBH4 in non-small-cell lung cancer (NSCLC) and found that ALKBH4 was highly expressed in NSCLC, as compared to that in adjacent normal lung tissues. ALKBH4 knockdown significantly induced the downregulation of NSCLC cell proliferation via cell cycle arrest at the G1 phase of in vivo tumour growth. ALKBH4 knockdown downregulated E2F transcription factor 1 (E2F1) and its target gene expression in NSCLC cells. ALKBH4 and E2F1 expression was significantly correlated in NSCLC clinical specimens. Moreover, patients with high ALKBH4 expression showed a poor prognosis, suggesting that ALKBH4 plays a pivotal tumour-promoting role in NSCLC.


Assuntos
Homólogo AlkB 4 da Lisina Desmetilase/metabolismo , Carcinogênese/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Linhagem Celular Tumoral , Proliferação de Células , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/diagnóstico , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Prognóstico
8.
J Pharm Biomed Anal ; 197: 113943, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33601155

RESUMO

There are more than 150 types of naturally occurring modified nucleosides, which are believed to be involved in various biological processes. Recently, an ultrahigh performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS) technique has been developed to measure low levels of modified nucleosides. A comprehensive analysis of modified nucleosides will lead to a better understanding of intracellular ribonucleic acid modification, but this analysis requires high-sensitivity measurements. In this perspective, we established a highly sensitive and quantitative method using the newly developed ion source, UniSpray. A mass spectrometer was used with a UniSpray source in positive ion mode. Our UHPLC-UniSpray-MS/MS methodology separated and detected the four major nucleosides, 42 modified nucleosides, and dG15N5 (internal standard) in 15 min. The UniSpray method provided good correlation coefficients (>0.99) for all analyzed nucleosides, and a wide range of linearity for 35 of the 46 nucleosides. Additionally, the accuracy and precision values satisfied the criteria of <15% for higher concentrations and <20% for the lowest concentrations of all nucleosides. We also investigated whether this method could measure nucleosides in biological samples using mouse tissues and non-small cell lung cancer clinical specimens. We were able to detect 43 and 31 different modified nucleosides from mouse and clinical tissues, respectively. We also found significant differences in the levels of N6-methyl-N6-threonylcarbamoyladenosine (m6t6A), 1-methylinosine (m1I), 2'-O-methylcytidine (Cm), 5-carbamoylmethyluridine (ncm5U), 5-methoxycarbonylmethyl-2-thiouridine (mcm5S2U), and 5-methoxycarbonylmethyl-2'-O-methyluridine (mcm5Um) between cancerous and noncancerous tissues. In conclusion, we developed a highly sensitive methodology using UHPLC-UniSpray-MS/MS to simultaneously detect and quantify modified nucleosides, which can be used for analysis of biological samples.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Cromatografia Líquida de Alta Pressão , Camundongos , Nucleosídeos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
9.
Oncol Lett ; 19(3): 2258-2264, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32194724

RESUMO

5-Fluorouracil (5-FU) is widely used in the treatment of various types of solid cancer. Our study showed that ribosomal protein L11 (RPL11) was a crucial factor affecting sensitivity of gastric cancer to 5-FU, implying that RPL11 expression is a potential biomarker for predicting 5-FU sensitivity. Kaplan-Meier survival analysis indicated that high RPL11 expression in gastric cancer patients treated with 5-FU was significantly associated with good prognosis. It was therefore investigated whether RPL11 affected the sensitivity of gastric cancer against 5-FU using four human gastric cancer cell lines, MKN45 (wild-type TP53 gene), NUGC4 (wild-type), MKN7 (mutated), and KE39 cells (mutated). In vitro assays demonstrated that RPL11 knockdown in gastric cancer cell lines carrying the TP53 wild-type gene attenuated 5-FU-induced cell growth suppression and activation of the P53 pathway, but not in cells carrying mutated TP53, suggesting that 5-FU suppresses tumor progression via RPL11-mediated activation of the P53 pathway in gastric cancer. The present study provides a potential therapeutic strategy for improving 5-FU resistance in gastric cancer by elevating RPL11 expression.

10.
Oncogenesis ; 9(2): 13, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029704

RESUMO

Considering the poor prognosis of most advanced cancers, prevention of invasion and metastasis is essential for disease control. Ras homologous (Rho) guanine exchange factors (GEFs) and their signaling cascade could be potential therapeutic targets in advanced cancers. We conducted in silico analyses of The Cancer Genome Atlas expression data to identify candidate Rho-GEF genes showing aberrant expression in advanced gastric cancer and found FERM, Rho/ArhGEF, and pleckstrin domain protein 1 (FARP1) expression is related to poor prognosis. Analyses in 91 clinical advanced gastric cancers of the relationship of prognosis and pathological factors with immunohistochemical expression of FARP1 indicated that high expression of FARP1 is significantly associated with lymphatic invasion, lymph metastasis, and poor prognosis of the patients (P = 0.025). In gastric cancer cells, FARP1 knockdown decreased cell motility, whereas FARP1 overexpression promoted cell motility and filopodium formation via CDC42 activation. FARP1 interacted with integrin ß5, and a potent integrin αvß5 inhibitor (SB273005) prevented cell motility in only high FARP1-expressing gastric cancer cells. These results suggest that the integrin αvß5-FARP1-CDC42 axis plays a crucial role in gastric cancer cell migration and invasion. Thus, regulatory cascade upstream of Rho can be a specific and promising target of advanced cancer treatment.

11.
Int J Mol Sci ; 20(24)2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861134

RESUMO

Glioblastoma multiforme (GBM), the most common primary malignant brain tumor in adults, is characterized by rapid proliferation, aggressive migration, and invasion into normal brain tissue. Formin proteins have been implicated in these processes. However, the role of formin-like 1 (FMNL1) in cancer remains unclear. We studied FMNL1 expression in glioblastoma samples using immunohistochemistry. We sought to analyze the correlation between FMNL1 expression, clinicopathologic variables, and patient survival. Migration and invasion assays were used to verify the effect of FMNL1 on glioblastoma cell lines. Microarray data were downloaded from The Cancer Genome Atlas and analyzed using gene set enrichment analysis (GSEA). FMNL1 was an independent predictor of poor prognosis in a cohort of 217 glioblastoma multiforme cases (p < 0.001). FMNL1 expression was significantly higher in the mesenchymal subtype. FMNL1 upregulation and downregulation were associated with mesenchymal and proneural markers in the GSEA, respectively. These data highlight the important role of FMNL1 in the neural-to-mesenchymal transition. Conversely, FMNL1 downregulation suppressed glioblastoma multiforme cell migration and invasion via DIAPH1 and GOLGA2, respectively. FMNL1 downregulation also suppressed actin fiber assembly, induced morphological changes, and diminished filamentous actin. FMNL1 is a promising therapeutic target and a useful biomarker for GBM progression.


Assuntos
Neoplasias Encefálicas/metabolismo , Forminas/metabolismo , Glioblastoma/metabolismo , Mesoderma/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Forminas/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mesoderma/patologia , Prognóstico , Interferência de RNA , Análise de Sobrevida
12.
Anticancer Res ; 39(8): 4129-4136, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31366497

RESUMO

BACKGROUND/AIM: 5-Aza-2-deoxycytidine (5-Aza-CdR) enhances the sensitivity to 5-fluorouracil (5-FU), but the molecular mechanism is not fully understood. The aim of this study was to investigate the molecular mechanism that enhances the sensitivity to 5-FU treated with 5-Aza-CdR via thymidine phosphorylase (TP). MATERIALS AND METHODS: The sensitivity to drugs was determined on several cancer cell lines by the MTT assay. Protein and mRNA levels were examined by immunoblot and RT-PCR, respectively. Gene silencing, binding of Sp1 to DNA and methylation of DNA was performed by siRNA, ChIP assay and sodium bisulfate genomic sequencing, respectively. RESULTS: Sp1-binding sites in the TP promoter were methylated in epidermoid carcinoma. 5-Aza-CdR demethylated Sp1-binding sites and enhanced sensitivity to 5-FU. CONCLUSION: Demethylation of Sp1-binding sites by 5-Aza-CdR was a key factor enhancing 5-FU sensitivity, which may enable more effective treatments for cancer patients with the combination of 5-Aza-CdR and 5-FU.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Metilação de DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Fator de Transcrição Sp1/genética , Timidina Fosforilase/genética , Sítios de Ligação/efeitos dos fármacos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Decitabina/metabolismo , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Regiões Promotoras Genéticas/efeitos dos fármacos , RNA Mensageiro/genética , Timidina Fosforilase/química
13.
Sci Rep ; 9(1): 6956, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061410

RESUMO

Non-small cell lung cancer (NSCLC) is the most frequent cause of cancer-related death worldwide. Although many molecular-targeted drugs for NSCLC have been developed in recent years, the 5-year survival rate of patients with NSCLC remains low. Therefore, an improved understanding of the molecular mechanisms underlying the biology of NSCLC is essential for developing novel therapeutic strategies for the treatment of NSCLC. In this study, we examined the role of miR-130b in NSCLC. Our results showed that high expression of miR-130b in clinical specimens was significantly associated with poor overall survival in patients with NSCLC. Moreover, miR-130b expression was significantly increased in NSCLC clinical specimens from patients with vascular and lymphatic invasion. Consistent with this, overexpression of miR-130b promoted invasion and matrix metalloproteinase-2 (MMP-2) activity in A549 cells. Argonaute2 immunoprecipitation and gene array analysis identified tissue inhibitor of metalloproteinase-2 (TIMP-2) as a target of miR-130b. Invasion activity promoted by miR-130b was attenuated by TIMP-2 overexpression in A549 cells. Furthermore, TIMP-2 concentrations in serum were inversely correlated with relative miR-130b expression in tumor tissues from the same patients with NSCLC. Overall, miR-130b was found to act as an oncomiR, promoting metastasis by downregulating TIMP-2 and invasion activities in NSCLC cells.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Seguimentos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Prognóstico , Transdução de Sinais , Taxa de Sobrevida , Inibidor Tecidual de Metaloproteinase-2/genética , Células Tumorais Cultivadas
14.
Bioorg Med Chem Lett ; 29(11): 1330-1335, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30952591

RESUMO

A study of the structural requirements of cholic acid derivatives as liver X receptor (LXR) ligands was performed. A model of cholenamide derivative 1 complexed with LXR showed that the C24 carbonyl oxygen forms a hydrogen bond with His435 located close to Trp457. The N,N-dimethyl group is located in a hydrophobic pocket. Based on these data, we designed compounds with high affinity for LXRs. Cholenamide derivatives 1-11 were synthesized from 3ß-acetyl-Δ5-cholenic acid 20, and lactams 12-19 were synthesized from alcohol 25. Tertiary amides 3 and 4 showed higher activity in reporter assays, and compounds with hydrophobic residues exhibited the highest activity of all derivatives. The stereochemistry at C23 was found to be an important determinant of EC50 and gene transactivation, as each isomer exhibited different activity.


Assuntos
Amidas/farmacologia , Ácido Cólico/farmacologia , Receptores X do Fígado/metabolismo , Amidas/síntese química , Amidas/química , Animais , Ácido Cólico/síntese química , Ácido Cólico/química , Relação Dose-Resposta a Droga , Humanos , Ligantes , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade
15.
Br J Cancer ; 120(8): 819-826, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30867563

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM), the most common brain malignancy in adults, is generally aggressive and incurable, even with multiple treatment modalities and agents. Filamins (FLNs) are a group of actin-binding proteins that regulate the actin cytoskeleton in cells. However, the role of FLNs in malignancies-particularly in GBM-is unclear. METHODS: The relation between FLNC expression and overall survival in GBM was evaluated by the Kaplan-Meier analysis using GBM patients from the Kagoshima University Hospital (n = 90) and data from the Cancer Genome Atlas (TCGA) (n = 153). To assess FLNC function in GBM, cell migration and invasion were examined with Transwell and Matrigel invasion assays using FLNC-overexpressing U251MG and LN299 GBM cells, and ShRNA-mediated FLNC knocked-down KNS81 and U87MG cells. The gelatin zymography assay was used to estimate matrix metalloproteinase (MMP) 2 activity. RESULTS: In silico analysis of GBM patient data from TCGA and immunohistochemical analyses of clinical GBM specimens revealed that increased FLNC expression was associated with poor patient prognosis. FLNC overexpression in GBM cell lines was positively correlated with enhanced invasiveness, but not migration, and was accompanied by upregulation of MMP2. CONCLUSIONS: FLNC is a potential therapeutic target and biomarker for GBM progression.


Assuntos
Biomarcadores Tumorais/genética , Filaminas/genética , Glioblastoma/genética , Invasividade Neoplásica/genética , Citoesqueleto de Actina/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/epidemiologia , Glioblastoma/patologia , Humanos , Estimativa de Kaplan-Meier , Masculino , Metaloproteinase 2 da Matriz/genética , Invasividade Neoplásica/patologia
16.
Genes Cells ; 23(11): 952-962, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30178547

RESUMO

FEAT, the protein encoded by methyltransferase-like 13 (METTL13), is aberrantly upregulated in most human cancers and potently drives tumorigenesis in vivo; however, its role in normal tissues remains elusive. Immunoblotting has displayed weak FEAT expression in normal human tissues, including the testis. Here, we found that FEAT is expressed in fetal and adult Leydig cells in the testis. FEAT knockdown using siRNA increased primary cilia formation in MA-10 Leydig tumor cells, accompanied by enhanced 5' adenosine monophosphate-activated protein kinase (AMPK) activation. Immunofluorescence analyses of FEAT-silenced MA-10 cells showed diminished insulin-like factor 3 (INSL3) expression. A male Mettl13+/- mouse developed bilateral intraabdominal cryptorchidism, suggesting defective INSL3 production by fetal Leydig cells. Leydig cells from the mouse showed markedly decreased INSL3 protein by immunohistochemistry. Together, these results suggest that FEAT facilitates the INSL3 production in testicular Leydig cells that is essential for transabdominal testis migration.


Assuntos
Criptorquidismo/metabolismo , Insulina/metabolismo , Células Intersticiais do Testículo/metabolismo , Metiltransferases/metabolismo , Proteínas/metabolismo , Testículo/metabolismo , Animais , Movimento Celular , Criptorquidismo/patologia , Insulina/genética , Células Intersticiais do Testículo/citologia , Masculino , Camundongos , Proteínas/genética , Testículo/citologia , Ativação Transcricional
17.
Oncoscience ; 5(3-4): 88-98, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29854877

RESUMO

Identifying new therapeutic target genes affecting the survival of patients with cancer is crucial for the development of new cancer therapies. Here, we developed a novel technology combining in vitro short hairpin RNA (shRNA) library screening and in silico analysis of the tumor transcriptome to identify prognostic factors via the p53 tumor-suppressor pathway. For initial screening, we screened 5,000 genes through selection of shRNAs in p53 wild-type tumor cells that altered sensitivity to the p53 activator actinomycin D (ActD) to identify p53 regulatory genes; shRNAs targeting 322 genes were obtained. Among these 322 genes, seven were prognostic factor candidates whose high expression increased ActD sensitivity while prolonging the survival period in patients with the p53 wild-type genotype. Conversely, we identified 33 genes as prognostic factor candidates among ActD-resistant genes related to a shortened survival period only in p53 wild-type tumors. These 40 genes had biological functions such as apoptosis, drug response, cell cycle checkpoint, and cell proliferation. The 40 genes selected by this method contained many known genes related to the p53 pathway and prognosis in patients with cancer. In summary, we developed an efficient screening method to identify p53-dependent prognostic factors with in vitro experimental data and database analysis.

18.
Sci Rep ; 8(1): 6760, 2018 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-29713062

RESUMO

Thymidine phosphorylase (TP) is a rate-limiting enzyme in the thymidine catabolic pathway. TP is identical to platelet-derived endothelial cell growth factor and contributes to tumour angiogenesis. TP induces the generation of reactive oxygen species (ROS) and enhances the expression of oxidative stress-responsive genes, such as interleukin (IL)-8. However, the mechanism underlying ROS induction by TP remains unclear. In the present study, we demonstrated that TP promotes NADPH oxidase-derived ROS signalling in cancer cells. NADPH oxidase inhibition using apocynin or small interfering RNAs (siRNAs) abrogated the induction of IL-8 and ROS in TP-expressing cancer cells. Meanwhile, thymidine catabolism induced by TP increased the levels of NADPH and intermediates of the pentose phosphate pathway (PPP). Both siRNA knockdown of glucose 6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme in PPP, and a G6PD inhibitor, dihydroepiandrosterone, reduced TP-induced ROS production. siRNA downregulation of 2-deoxy-D-ribose 5-phosphate (DR5P) aldolase, which is needed for DR5P to enter glycolysis, also suppressed the induction of NADPH and IL-8 in TP-expressing cells. These results suggested that TP-mediated thymidine catabolism increases the intracellular NADPH level via the PPP, which enhances the production of ROS by NADPH oxidase and activates its downstream signalling.


Assuntos
Glucosefosfato Desidrogenase/genética , NADPH Oxidases/metabolismo , Neoplasias/metabolismo , Timidina Fosforilase/genética , Timidina/metabolismo , Linhagem Celular Tumoral , Di-Hidrotestosterona/farmacologia , Técnicas de Inativação de Genes , Glucosefosfato Desidrogenase/antagonistas & inibidores , Humanos , Interleucina-8/genética , Metabolismo/genética , NADPH Oxidases/genética , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Via de Pentose Fosfato/genética , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Timidina Fosforilase/metabolismo
19.
Pharmacol Res ; 132: 15-20, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29604437

RESUMO

Thymidine phosphorylase (TP) is a rate-limiting enzyme in thymidine catabolism. TP has several important roles in biological and pharmacological mechanisms; importantly TP acts as an angiogenic factor and one of metabolic enzymes of fluoro-pyrimidine anticancer agents and modifies inflammation. Improving our understanding of the characteristics and functions of TP has led to the development of novel TP-based anticancer therapies. We recently reported that TP-dependent thymidine catabolism contributes to tumour survival in low nutrient conditions and the pathway from thymidine to the glycolysis cascade is affected in the context of physiological and metabolic conditions. In this review, we describe recent advancement in our understanding of TP, with a focus on cancer cell biology and the pharmacology of pyrimidine analogue anticancer agents. This review provides comprehensive understanding of the molecular mechanism of TP function in cancer.


Assuntos
Neoplasias/patologia , Timidina Fosforilase/metabolismo , Animais , Resistencia a Medicamentos Antineoplásicos , Humanos , NF-kappa B/metabolismo , Neoplasias/metabolismo , Neovascularização Patológica
20.
Cell Rep ; 19(7): 1313-1321, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28514652

RESUMO

Thymidine phosphorylase (TP), a rate-limiting enzyme in thymidine catabolism, plays a pivotal role in tumor progression; however, the mechanisms underlying this role are not fully understood. Here, we found that TP-mediated thymidine catabolism could supply the carbon source in the glycolytic pathway and thus contribute to cell survival under conditions of nutrient deprivation. In TP-expressing cells, thymidine was converted to metabolites, including glucose 6-phosphate, lactate, 5-phospho-α-D-ribose 1-diphosphate, and serine, via the glycolytic pathway both in vitro and in vivo. These thymidine-derived metabolites were required for the survival of cells under low-glucose conditions. Furthermore, activation of thymidine catabolism was observed in human gastric cancer. These findings demonstrate that thymidine can serve as a glycolytic pathway substrate in human cancer cells.


Assuntos
Neoplasias Gástricas/metabolismo , Timidina Fosforilase/metabolismo , Timidina/metabolismo , Animais , Carbono/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxirribose/farmacologia , Glicólise/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Estado Nutricional/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Neoplasias Gástricas/patologia , Análise de Sobrevida , Timidina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...