Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(12): 8706-8717, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38465866

RESUMO

Semiconducting transition metal dichalcogenides (TMDs) are a class of two-dimensional materials with potential applications in optoelectronics, spintronics, valleytronics, and quantum information processing. Understanding their stability under ambient conditions is critical for determining their in-air processability during device fabrication and for predicting their long-term device performance stability. While the effects of environmental conditions (i.e., oxygen, moisture, and light) on TMD degradation are well-acknowledged, the role of defects in driving their oxidation remains unclear. We conducted a systematic X-ray photoelectron spectroscopy study on WS2 single crystals with different surface S-vacancy concentrations formed via controlled argon sputtering. Oxidation primarily occurred at defect concentrations ≥ 10%, resulting in stoichiometric WO3 formation, while a stable surface was observed at lower concentrations. Theoretical calculations informed us that single S-vacancies do not spontaneously oxidize, while defect pairing at high vacancy concentrations facilitates O2 dissociation and subsequent oxide formation. Our XPS results also point to vacancy-related structural and electrostatic disorder as the main origin for the p-type characteristics that persists even after oxidation. Despite the complex interplay between defects and TMD oxidation processes, our work unveils scientifically informed guidance for working effectively with TMDs.

3.
ACS Nano ; 15(2): 2686-2697, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33502172

RESUMO

Making electrical contacts to semiconducting transition metal dichalcogenides (TMDCs) represents a major bottleneck for high device performance, often manifesting as strong Fermi level pinning and high contact resistance. Despite intense ongoing research, the mechanism by which lattice defects in TMDCs impact the transport properties across the contact-TMDC interface remains unsettled. Here we study the impact of S-vacancies on the electronic properties at a MoS2 monolayer interfaced with graphite by photoemission spectroscopy, where the defect density is selectively controlled by Ar sputtering. A clear reduction of the MoS2 core level and valence band binding energies is observed as the defect density increases. The experimental results are explained in terms of (i) gap states' energy distribution and (ii) S-vacancies' electrostatic disorder effect. Our model indicates that the Fermi level pinning at deep S-vacancy gap states is the origin of the commonly reported large electron injection barrier (∼0.5 eV) at the MoS2 ML interface with low work function metals. At the contact with high work function electrodes, S-vacancies do not significantly affect the hole injection barrier, which is intrinsically favored by Fermi level pinning at shallow occupied gap states. Our results clarify the importance of S-vacancies and electrostatic disorder in TMDC-based electronic devices, which could lead to strategies for optimizing device performance and production.

4.
Sci Rep ; 9(1): 8769, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217503

RESUMO

We report transport measurements of dual gated MoS2 and WSe2 devices using atomic layer deposition grown Al2O3 as gate dielectrics. We are able to achieve current pinch-off using independent split gates and observe current steps suggesting possible carrier confinement. We also investigated the impact of gate geometry and used electrostatic potential simulations to explain the observed device physics.

5.
Nat Commun ; 10(1): 1573, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952953

RESUMO

Miniaturization of electronic circuits into the single-atom level requires novel approaches to characterize transport properties. Due to its unrivaled precision, scanning probe microscopy is regarded as the method of choice for local characterization of atoms and single molecules supported on surfaces. Here we investigate electronic transport along the anisotropic germanium (001) surface with the use of two-probe scanning tunneling spectroscopy and first-principles transport calculations. We introduce a method for the determination of the transconductance in our two-probe experimental setup and demonstrate how it captures energy-resolved information about electronic transport through the unoccupied surface states. The sequential opening of two transport channels within the quasi-one-dimensional Ge dimer rows in the surface gives rise to two distinct resonances in the transconductance spectroscopic signal, consistent with phase-coherence lengths of up to 50 nm and anisotropic electron propagation. Our work paves the way for the electronic transport characterization of quantum circuits engineered on surfaces.

6.
Nanoscale ; 10(48): 22927-22936, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30499578

RESUMO

The understanding of the interlayer interactions in vertical heterostructures of two-dimensional (2D) transition metal dichalcogenides (TMDCs) is essential to exploit their advanced functions for next-generation optoelectronics and electronics. Here we demonstrate a monolithic stacking of TMDC heterostructures with 2D MoS2 and WS2 layers via in situ physical vapor deposition. We find that the kinetically sputtered atoms are able to overcome the interlayer van der Waals forces between the vertical layers, leading to a substantial number of randomly oriented stacks with various twist angles. Our X-ray photoelectron spectroscopy results reveal a type II heterojunction for 2D WS2/MoS2, showing a band alignment with a conduction band offset of 0.41 eV and a valence band offset of 0.25 eV. In particular, we observed a remarkable interlayer coupling and associated exciton relaxation at the hetero-interface due to the misoriented stacks. By analyzing the band structures and charge densities of the vertical stacks using first-principles calculations, we reveal that the interlayer coupling is a function of the interlayer distance and is relatively insensitive to the angle of misorientation.

7.
Phys Chem Chem Phys ; 20(16): 11037-11046, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29648564

RESUMO

Understanding the mechanisms involved in the covalent attachment of organic molecules to surfaces is a major challenge for nanotechnology and surface science. On the basis of classical organic chemistry mechanistic considerations, key issues such as selectivity and reactivity of the organic adsorbates could be rationalized and exploited for the design of molecular-scale circuits and devices. Here we use tris(benzocyclobutadieno)triphenylene, a singular Y-shaped hydrocarbon containing antiaromatic cyclobutadienoid rings, as a molecular probe to study the reaction of polycyclic conjugated molecules with atomic scale moieties, dangling-bond (DB) dimers on a hydrogen-passivated Ge(001):H surface. By combining molecular design, synthesis, scanning tunneling microscopy and spectroscopy (STM/STS) and computational modeling, we show that the attachment involves a concerted [4+2] cycloaddition reaction that is completely site-selective and fully reversible. This selectivity, governed by the bond alternation induced by the presence of the cyclobutadienoid rings, allows for the control of the orientation of the molecules with respect to the surface DB-patterning. We also demonstrate that by judicious modification of the electronic levels of the polycyclic benzenoid through substituents, the reaction barrier height can be modified. Finally, we show that after deliberate tip-induced covalent bond cleavage, adsorbed molecules can be used to fine tune the electronic states of the DB dimer. This power to engineer deliberately the bonding configuration and electronic properties opens new perspectives for creating prototypical nanoscale circuitry.

8.
RSC Adv ; 8(14): 7744-7752, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35539107

RESUMO

We present an analysis of the electronic properties of an MoS2 monolayer (ML) and bilayer (BL) as-grown on a highly ordered pyrolytic graphite (HOPG) substrate by physical vapour deposition (PVD), using lab-based angle-resolved photoemission spectroscopy (ARPES) supported by scanning tunnelling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) for morphology and elemental assessments, respectively. Despite the presence of multiple domains (causing in-plane rotational disorder) and structural defects, electronic band dispersions were clearly observed, reflecting the high density of electronic states along the high symmetry directions of MoS2 single crystal domains. In particular, the thickness dependent direct-to-indirect band gap transition previously reported only for MoS2 layers obtained by exfoliation or via epitaxial growth processes, was found to be also accessible in our PVD grown MoS2 samples. At the same time, electronic gap states were detected, and attributed mainly to structural defects in the 2D layers. Finally, we discuss and clarify the role of the electronic gap states and the interlayer coupling in controlling the energy level alignment at the MoS2/substrate interface.

9.
ACS Nano ; 10(9): 8499-507, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27504525

RESUMO

One of the key challenges in the construction of atomic-scale circuits and molecular machines is to design molecular rotors and switches by controlling the linear or rotational movement of a molecule while preserving its intrinsic electronic properties. Here, we demonstrate both the continuous rotational switching and the controlled step-by-step single switching of a trinaphthylene molecule adsorbed on a dangling bond dimer created on a hydrogen-passivated Ge(001):H surface. The molecular switch is on-surface assembled when the covalent bonds between the molecule and the dangling bond dimer are controllably broken, and the molecule is attached to the dimer by long-range van der Waals interactions. In this configuration, the molecule retains its intrinsic electronic properties, as confirmed by combined scanning tunneling microscopy/spectroscopy (STM/STS) measurements, density functional theory calculations, and advanced STM image calculations. Continuous switching of the molecule is initiated by vibronic excitations when the electrons are tunneling through the lowest unoccupied molecular orbital state of the molecule. The switching path is a combination of a sliding and rotation motion over the dangling bond dimer pivot. By carefully selecting the STM conditions, control over discrete single switching events is also achieved. Combined with the ability to create dangling bond dimers with atomic precision, the controlled rotational molecular switch is expected to be a crucial building block for more complex surface atomic-scale devices.

10.
Phys Chem Chem Phys ; 18(25): 16757-65, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27271337

RESUMO

Construction of single-molecule electronic devices requires the controlled manipulation of organic molecules and their properties. This could be achieved by tuning the interaction between the molecule and individual atoms by local "on-surface" chemistry, i.e., the controlled formation of chemical bonds between the species. We demonstrate here the reversible attachment of a planar conjugated polyaromatic molecule to a pair of unpassivated dangling bonds on a hydrogenated Ge(001):H surface via a Diels-Alder [4+2] addition using the tip of a scanning tunneling microscope (STM). Due to the small stability difference between the covalently bonded and a nearly undistorted structure attached to the dangling bond dimer by long-range dispersive forces, we show that at cryogenic temperatures the molecule can be switched between both configurations. The reversibility of this covalent bond forming reaction may be applied in the construction of complex circuits containing organic molecules with tunable properties.

11.
Adv Mater ; 28(25): 4983-90, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27119207

RESUMO

Flexible MgO barrier magnetic tunnel junction (MTJ) devices are fabricated using a transfer printing process. The flexible MTJ devices yield significantly enhanced tunneling magnetoresistance of ≈300% and improved abruptness of switching, as residual strain in the MTJ structure is released during the transfer process. This approach could be useful for flexible electronic systems that require high-performance memory components.

12.
Phys Chem Chem Phys ; 18(5): 3854-61, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26766161

RESUMO

Controlling the strength of the coupling between organic molecules and single atoms provides a powerful tool for tuning electronic properties of single-molecule devices. Here, using scanning tunneling microscopy and spectroscopy (STM/STS) supported by theoretical modeling, we study the interaction of a planar organic molecule (trinaphthylene) with a hydrogen-passivated Ge(001):H substrate and a single dangling bond quantum dot on that surface. The electronic structure of the molecule adsorbed on the hydrogen-passivated surface is similar to the gas phase structure and the measurements show that HOMO and LUMO states contribute to the STM filled and empty state images, respectively. Furthermore, we show that the electronic properties are not significantly affected when the molecule is attached to the single dangling bond, which is in contrast with the strong interaction of the molecule with a dangling bond dimer. Our results show that the dangling bond quantum dots could stabilize organic molecules on a hydrogenated semiconductor without affecting their originally designed gas phase electronic properties. Together with the ability to laterally manipulate the molecules on the surface, this will be advantageous in the construction of single-molecule devices, where the coupling and positioning of the molecules on the substrate could be tuned by a proper design of the surface quantum dot arrays, comprising both single and dimerized dangling bonds.

13.
ACS Nano ; 7(11): 10105-11, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24148187

RESUMO

Fabrication of single-molecule logic devices requires controlled manipulation of molecular states with atomic-scale precision. Tuning molecule-substrate coupling is achieved here by the reversible attachment of a prototypical planar conjugated organic molecule to dangling bonds on the surface of a hydrogenated semiconductor. We show that the ground electronic state resonance of a Y-shaped polyaromatic molecule physisorbed on a defect-free area of a fully hydrogenated surface cannot be observed by scanning tunneling microscopy (STM) measurements because it is decoupled from the Ge bulk states by the hydrogen-passivated surface. The state can be accessed by STM only if the molecule is contacted with the substrate by a dangling bond dimer. The reversibility of the attachment processes will be advantageous in the construction of surface atomic-scale circuits composed of single-molecule devices interconnected by the surface dangling bond wires.

14.
J Phys Condens Matter ; 25(2): 025503, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23197188

RESUMO

We compute the electron transmission through different types of dangling-bond wire on Si(100)-H (2 × 1). Recent progress in the construction of atomic-size interconnects (Weber et al 2012 Science 335 64) shows the possibility to achieve atomic-size circuits via atomic-size wires using silicon surfaces. Hence, electron transport through quasi-1D Si-based structures is a compelling reality. Prior to these achievements, wires formed by controlled desorption of passivating H atoms off the monohydride Si(100) surface have been shown to be subject to 1D correlations and instabilities (Hitosugi et al 1999 Phys. Rev. Lett. 82 4034). The present calculations are based on density functional theory and evaluate the electron transmission though the minimum-energy 1D structures that can be formed when creating dangling-bonds on Si(100)-(2 × 1)-H. The purpose of this study is twofold: (i) to assess the transport properties of these atomic-size wires in the presence of 1D instabilities; (ii) to provide a fingerprint for experimental identification of the instability through the transport characteristics of the wires. To these aims, we evaluate the electron transport through the wires in the absence of instabilities, in the presence of distortions (Jahn-Teller instabilities) and in the presence of magnetic instabilities (ferro- and antiferro-ordering). We find that instabilities substantially reduce the transport capabilities of dangling-bond wires leading to transmissions that vary so differently with electron energy that an unambiguous identification of the wire type should be accessible in transport experiments.


Assuntos
Transporte de Elétrons , Hidrogênio/química , Modelos Químicos , Modelos Moleculares , Nanoestruturas/química , Silício/química , Simulação por Computador , Nanoestruturas/ultraestrutura
15.
J Phys Condens Matter ; 24(9): 095011, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22329961

RESUMO

Atomic-scale Boolean logic gates (LGs) with two inputs and one output (i.e. OR, NOR, AND, NAND) were designed on a Si(100)-(2 × 1)-H surface and connected to the macroscopic scale by metallic nano-pads physisorbed on the Si(100)-(2 × 1)-H surface. The logic inputs are provided by saturating and unsaturating two surface Si dangling bonds, which can, for example, be achieved by adding and extracting two hydrogen atoms per input. Quantum circuit design rules together with semi-empirical elastic-scattering quantum chemistry transport calculations were used to determine the output current intensity of the proposed switches and LGs when they are interconnected to the metallic nano-pads by surface atomic-scale wires. Our calculations demonstrate that the proposed devices can reach ON/OFF ratios of up to 2000 for a running current in the 10 µA range.


Assuntos
Hidrogênio/química , Lógica , Silício/química , Modelos Moleculares , Conformação Molecular , Propriedades de Superfície
16.
Phys Rev Lett ; 106(16): 167201, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21599406

RESUMO

The influence of the insertion of an ultrathin NiO layer between the MgO barrier and the ferromagnetic electrodes in magnetic tunnel junctions has been investigated from measurements of the tunneling magnetoresistance and via x-ray magnetic circular dichroism (XMCD). The magnetoresistance shows a high asymmetry with respect to bias voltage, giving rise to a negative value of up to -16% at 2.8 K. We attribute this effect to the formation of noncollinear spin structures at the interface of the NiO layer as inferred from XMCD measurements. The magnetic moments of the interface Ni atoms tilt from their easy axis due to exchange coupling with the neighboring ferromagnetic electrode, and the tilting angle decreases with increasing NiO thickness. The experimental observations are further supported by noncollinear spin density functional calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...