Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Alzheimers Res Ther ; 6(9): 70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25478031

RESUMO

INTRODUCTION: Recently, a whole-exome sequencing (WES) study showed that a rare variant rs145999145 composed of p.Val232Met located in exon 7 of the phospholipase D3 (PLD3) gene confers a doubled risk for late-onset Alzheimer's disease (AD). Knockdown of PLD3 elevates the levels of extracellular amyloid-beta (Aß), suggesting that PLD3 acts as a negative regulator of Aß precursor protein (APP) processing. However, the precise cellular location and distribution of PLD3 in AD brains remain largely unknown. METHODS: By quantitative RT-PCR (qPCR), western blot, immunohistochemistry, and bioinformatics analysis, we studied PLD3 expression patterns and levels in a series of AD and control brains, including amyotrophic lateral sclerosis, Parkinson's disease, multiple system atrophy, and non-neurological cases. RESULTS: The levels of PLD3 mRNA and protein expression were reduced modestly in AD brains, compared with those in non-AD brains. In all brains, PLD3 was expressed constitutively in cortical neurons, hippocampal pyramidal and granular neurons but not in glial cells. Notably, PLD3 immunoreactivity was accumulated on neuritic plaques in AD brains. We identified the human granulin (GRN) gene encoding progranulin (PRGN) as one of most significant genes coexpressed with PLD3 by bioinformatics database search. PLD3 was actually coexpressed and interacted with PGRN both in cultured cells in vitro and in AD brains in vivo. CONCLUSIONS: We identified an intense accumulation of PLD3 on neuritic plaques coexpressed with PGRN in AD brains, suggesting that PLD3 plays a key role in the pathological processes of AD.

2.
Alzheimers Res Ther ; 6(2): 17, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24684749

RESUMO

INTRODUCTION: TMEM106B is a transmembrane glycoprotein of unknown function located within endosome/lysosome compartments expressed ubiquitously in various cell types. Previously, the genome-wide association study (GWAS) identified a significant association of TMEM106B single nucleotide polymorphisms (SNPs) with development of frontotemporal lobar degeneration with ubiquitinated TAR DNA-binding protein-43 (TDP-43)-positive inclusions (FTLD-TDP), particularly in the patients exhibiting the progranulin (PGRN) gene (GRN) mutations. Recent studies indicate that TMEM106B plays a pathological role in various neurodegenerative diseases, including Alzheimer's disease (AD). However, at present, the precise levels of TMEM106B expression in AD brains remain unknown. METHODS: By quantitative reverse transcription (RT)-PCR (qPCR), western blot and immunohistochemistry, we studied TMEM106B and PGRN expression levels in a series of AD and control brains, including amyotrophic lateral sclerosis, Parkinson's disease, multiple system atrophy and non-neurological cases. RESULTS: In AD brains, TMEM106B mRNA and protein levels were significantly reduced, whereas PGRN mRNA levels were elevated, compared with the levels in non-AD brains. In all brains, TMEM106B was expressed in the majority of cortical neurons, hippocampal neurons, and some populations of oligodendrocytes, reactive astrocytes and microglia with the location in the cytoplasm. In AD brains, surviving neurons expressed intense TMEM106B immunoreactivity, while senile plaques, neurofibrillary tangles and the perivascular neuropil, almost devoid of TMEM106B, intensely expressed PGRN. CONCLUSIONS: We found an inverse relationship between TMEM106B (downregulation) and PGRN (upregulation) expression levels in AD brains, suggesting a key role of TMEM106B in the pathological processes of AD.

3.
Bioinform Biol Insights ; 7: 357-68, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24324330

RESUMO

The neuron-restrictive silencer factor (NRSF) is a zinc finger transcription factor that represses neuronal gene transcription in non-neuronal cells by binding to the consensus repressor element-1 (RE1) located in regulatory regions of target genes. NRSF silences the expression of a wide range of target genes involved in neuron-specific functions. Previous studies showed that aberrant regulation of NRSF plays a key role in the pathological process of human neurodegenerative diseases. However, a comprehensive set of NRSF target genes relevant to human neuronal functions has not yet been characterized. We performed genome-wide data mining from chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) datasets of NRSF binding sites in human embryonic stem cells (ESC) and the corresponding ESC-derived neurons, retrieved from the database of the ENCODE/HAIB project. Using bioinformatics tools such as Avadis NGS and MACS, we identified 2,172 NRSF target genes in ESC and 308 genes in ESC-derived neurons based on stringent criteria. Only 40 NRSF target genes overlapped between both data sets. According to motif analysis, binding regions showed an enrichment of the consensus RE1 sites in ESC, whereas they were mainly located in poorly defined non-RE1 sites in ESC-derived neurons. Molecular pathways of NRSF target genes were linked with various neuronal functions in ESC, such as neuroactive ligand-receptor interaction, CREB signaling, and axonal guidance signaling, while they were not directed to neuron-specific functions in ESC-derived neurons. Remarkable differences in ChIP-Seq-based NRSF target genes and pathways between ESC and ESC-derived neurons suggested that NRSF-mediated silencing of target genes is highly effective in human ESC but not in ESC-derived neurons.

4.
Gene Regul Syst Bio ; 7: 139-52, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24250222

RESUMO

Nuclear respiratory factor 1 (NRF1) serves as a transcription factor that activates the expression of a wide range of nuclear genes essential for mitochondrial biogenesis and function, including mitochondrial respiratory complex subunits, heme biosynthetic enzymes, and regulatory factors involved in the replication and transcription of mitochondrial DNA. Increasing evidence indicates that mitochondrial function is severely compromised in the brains of aging-related neurodegenerative diseases. To identify the comprehensive set of human NRF1 target genes potentially relevant to the pathogenesis of neurodegenerative diseases, we analyzed the NRF1 chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) dataset retrieved from the Encyclopedia of DNA Elements (ENCODE) project. Overall, we identified 2,470 highly stringent ChIP-Seq peaks on protein-coding genes in SK-N-SH human neuroblastoma cells. They were accumulated in the proximal promoter regions with an existence of the NRF1-binding consensus sequence. The set of ChIP-Seq-based NRF1 target genes included known NRF1 targets such as EIF2S1, EIF2S2, CYCS, FMR1, FXR2, E2F6, CD47, and TOMM34. By pathway analysis, the molecules located in the core pathways related to mitochondrial respiratory function were determined to be highly enriched in NRF1 target genes. Furthermore, we found that NRF1 target genes play a pivotal role in regulation of extra-mitochondrial biological processes, including RNA metabolism, splicing, cell cycle, DNA damage repair, protein translation initiation, and ubiquitin-mediated protein degradation. We identified a panel of neurodegenerative disease-related genes, such as PARK2 (Parkin), PARK6 (Pink1), PARK7 (DJ-1), and PAELR (GPR37) for Parkinson's disease, as well as PSENEN (Pen2) and MAPT (tau) for Alzheimer's disease, as previously unrecognized NRF1 targets. These results suggest a logical hypothesis that aberrant regulation of NRF1 and its targets might contribute to the pathogenesis of human neurodegenerative diseases via perturbation of diverse mitochondrial and extra-mitochondrial functions.

6.
PLoS One ; 8(7): e69130, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894418

RESUMO

Plasma uric acid (UA) levels decrease following clinical progression and stage development of Parkinson's disease (PD). However, the molecular mechanisms underlying decreases in plasma UA levels remain unclear, and the potential to apply mutagenesis to a PD model has not previously been discovered. We identified a unique mutant of the silkworm Bombyx mori (B.mori) op. Initially, we investigated the causality of the phenotypic "op" by microarray analysis using our constructed KAIKO functional annotation pipeline. Consequently, we found a novel UA synthesis-modulating pathway, from DJ-1 to xanthine oxidase, and established methods for large-scale analysis of gene expression in B. mori. We found that the mRNA levels of genes in this pathway were significantly lower in B. mori op mutants, indicating that downstream events in the signal transduction cascade might be prevented. Additionally, levels of B.mori tyrosine hydroxylase (TH) and DJ-1 mRNA were significantly lower in the brain of B. mori op mutants. UA content was significantly lower in the B. mori op mutant tissues and hemolymph. The possibility that the B. mori op mutant might be due to loss of DJ-1 function was supported by the observed vulnerability to oxidative stress. These results suggest that UA synthesis, transport, elimination and accumulation are decreased by environmental oxidative stress in the B. mori op mutant. In the case of B. mori op mutants, the relatively low availability of UA appears to be due both to the oxidation of DJ-1 and to its expenditure to mitigate the effects of environmental oxidative stress. Our findings are expected to provide information needed to elucidate the molecular mechanism of decreased plasma UA levels in the clinical stage progression of PD.


Assuntos
Doença de Parkinson/metabolismo , Ácido Úrico/metabolismo , Animais , Bombyx , Modelos Animais de Doenças , Mutação , Estresse Oxidativo , Doença de Parkinson/genética , Transdução de Sinais/fisiologia , Tirosina 3-Mono-Oxigenase/genética , Xantina Oxidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...