Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 127(17): 3870-3887, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37093658

RESUMO

The microscopic aspects of 1-methyl-3-octylimidazolium tetrafluoroborate ([MOIm][BF4]) mixtures with formamide (FA), N-methylformamide (NMF), and N,N-dimethylformamide (DMF) were investigated using spectroscopic techniques of femtosecond Raman-induced Kerr effect spectroscopy (fs-RIKES), FT-IR, and NMR. Molecular dynamics simulations and quantum chemistry calculations were also performed. According to fs-RIKES, the first moment of the low-frequency spectrum bands mainly originating from the intermolecular vibrations in the [MOIm][BF4]/FA and [MOIm][BF4]/DMF systems changed gradually with the molecular liquid mole fraction XML but that in the [MOIm][BF4]/NMF system was constant up to XNMF = 0.7 and then gradually increased in the range of XNMF ≥ 0.7. Excluding the contribution of the 2D hydrogen-bonding network due to the presence of FA in the low-frequency spectrum band, the XML dependence of the normalized first moment of the low-frequency band in the [MOIm][BF4]/FA and [MOIm][BF4]/NMF systems revealed that the normalized first moment did not remarkably change in the range of XML < 0.7 but drastically increased in XML ≥ 0.7. FT-IR results indicated that the amide C═O band shifted to the low-frequency side with increasing XML for the three mixtures due to the hydrogen bonds. The imidazolium ring C-H band also showed a similar tendency to the amide C═O band. 19F NMR probed the microenvironment of [BF4]- in the mixtures. The [MOIm][BF4]/NMF and [MOIm][BF4]/DMF systems showed an up-field shift of the F atoms of the anion with increasing XML, and the [MOIm][BF4]/FA system exhibited a down-field shift. Steep changes in the chemical shifts were confirmed in the region of XML > 0.8. On the basis of the quantum chemistry calculations, the observed chemical shifts with increasing XML were mainly attributed to the many-body interactions of ions and amides for the [MOIm][BF4]/FA and [MOIm][BF4]/DMF systems. Meanwhile, the long distance between the cation and the anion was due to the high dielectric medium for the [MOIm][BF4]/NMF system, which led to an up-field shift.

2.
Phys Chem Chem Phys ; 25(14): 9868-9880, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36946188

RESUMO

In order to determine the self-diffusion coefficients D of all the species in the solutions at 298.2 K, 1H and 19F NMR diffusion ordered spectroscopy (DOSY) has been conducted on coumarin 153 (C153) in binary mixed solvents of an imidazolium-based ionic liquid (IL), 1-dodecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (C12mimTFSA), with three molecular liquids (MLs) of chloroform (CL), benzene (BZ), and propylene carbonate (PC) as a function of ML mole fraction xML. Below xML ≈ 0.8, the D values of each species do not significantly depend on the MLs. However, above this mole fraction, the diffusion of C153 becomes smoother in the order of BZ ≈ CL > PC systems. The interactions among C153, C12mim+, TFSA-, and ML molecules have been investigated using infrared (IR) and 1H and 13C NMR spectroscopic techniques. The relations of the diffusion of the species with the interactions among them have been discussed on the molecular scale. In the IL solution, the C153 carbonyl oxygen atom is hydrogen-bonded with the imidazolium ring C2-H atom of C12mim+. C12mim+ also forms an ion pair with TFSA-. Thus, C153, C12mim+, and TFSA- cooperatively move in the CL and BZ solutions at a lower ML content, xML < ∼0.8. On the other hand, at a higher ML content, xML > ∼0.8, the C153 molecule diffuses with CL and BZ molecules because of the hydrogen bonding between the C153 carbonyl O atom and the CL H atom and the π-π interaction between the C153 and BZ ring planes, respectively. For the PC system, the change in the relative self-diffusion coefficients of each species with increasing xML differs from those for the CL and BZ systems because of both hydrogen bonding donor H and acceptor O atoms of PC for C153, the IL cation and anion, and PC themselves.

3.
Phys Chem Chem Phys ; 24(22): 13698-13712, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35612374

RESUMO

The upper critical solution temperature (UCST)-type liquid-liquid phase separation of imidazolium-based ionic liquids (ILs), 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([Cnmim][TFSI], where n represents the alkyl chain length of the cation, n = 6, 8, 10, and 12) binary solutions with formamide (FA) was examined as a function of temperature and the FA mole fraction xFA. The two-phase region (immiscible region) of the solutions is much larger and expands more with the increase in n, in comparison with the previous [Cnmim][TFSI]-1,4-dioxane (1,4-DIO) systems. An array of spectroscopic techniques, including 1H and 13C NMR and IR combined with molecular dynamics (MD) simulations, was conducted on the present binary systems to clarify the microscopic interactions that contribute to the phase-separation mechanism. The hydrogen-bonding interactions of the imidazolium ring H atoms are more favorable with the O atoms of the FA molecules than with 1,4-DIO molecules, whereas the latter interact more favorably with the alkyl chain of the cation. Upon lowering the temperature, the FA molecules gradually self-aggregate through self-hydrogen bonding to form FA clusters. Concomitantly, clusters of ILs are formed via the electrostatic interaction between the counter ions and the dispersion force among the IL alkyl chains. Small-angle neutron scattering (SANS) experiments on the [C6mim][TFSI]-FA-d2 and [C8mim][TFSI]-FA-d2 systems revealed, similarly to [Cnmim][TFSI]-1,4-DIO systems, the crossover of the mechanism from the 3D-Ising mechanism around the UCST xFA to the mean-field mechanism at both sides of the mole fraction. Interestingly, the xFA range of the 3D-Ising mechanism for the FA systems is wider compared with the range of the 1,4-DIO systems. In this way, the self-hydrogen bonding among FA molecules most significantly governs the phase equilibria of the [Cnmim][TFSI]-FA systems.

4.
J Phys Chem B ; 125(51): 13896-13907, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34913705

RESUMO

The mixing states of two imidazolium-based ionic liquids (ILs) with different anions, 1-methyl-3-octylimidazolium tetrafluoroborate (C8mimBF4) and bis(trifluoromethylsulfonyl)amide (C8mimTFSA), with three molecular liquids (MLs), methanol (MeOH), acetonitrile (AN), and dimethyl sulfoxide (DMSO), have been investigated on both mesoscopic and microscopic scales using small-angle neutron scattering (SANS), infrared (IR), and 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. Additionally, molecular dynamics (MD) simulations have been conducted on the six combinations of ILs and MLs to observe the states of their mixtures on the atomic level. The SANS profiles of the IL-ML mixtures suggested that MeOH molecules only form clusters in both C8mimBF4 and C8mimTFSA, whereas AN and DMSO were homogeneously mixed with ILs on the SANS scale. MeOH clusters are more enhanced in BF4--IL than TFSA--IL. The microscopic interactions among IL cations, anions, and MLs should contribute to the mesoscopic mixing states of the IL-ML mixtures. In fact, the IL cation-anion, cation-ML, anion-ML, and ML-ML interactions observed by IR, NMR, and MD simulations clarified the reasons for the mixing states of the IL-ML binary solutions observed by the SANS experiments. In neat ILs, the imidazolium ring of the IL cation more strongly interacts with BF4- than TFSA- due to the higher charge density of the former. The interaction of anions with the imidazolium ring is more easily loosened on adding MLs to ILs in the order of DMSO > MeOH > AN. It does not significantly depend on the anions. However, the replacement of the anion on the imidazolium ring by an ML depends on the anions; the replacement is more proceeded in the order of MeOH > DMSO > AN in BF4--IL, while DMSO > MeOH > AN in TFSA--IL. On the other hand, the solvation of both anions by MLs is stronger in the order of MeOH > DMSO ≈ AN. Despite the stronger interactions of MeOH with both cations and anions, MeOH molecules are heterogeneously mixed with both ILs to form clusters in the mixtures. Therefore, the self-hydrogen bonding among MeOH molecules most markedly governs the mixing state of the binary solutions among the abovementioned interactions.


Assuntos
Dimetil Sulfóxido , Metanol , Acetonitrilas , Amidas , Ânions , Imidazóis
5.
Phys Chem Chem Phys ; 23(42): 24449-24463, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34697615

RESUMO

Liquid-liquid phase separation of binary systems for imidazolium-based ionic liquids (ILs), 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([Cnmim][TFSI], where n represents the alkyl chain length of the cation), with 1,4-dioxane (1,4-DIO) was observed as a function of temperature and 1,4-DIO mole fraction, x1,4-DIO. The phase diagrams obtained for [Cnmim][TFSI]-1,4-DIO systems showed that the miscible region becomes wider with an increase in the alkyl chain length, n. For n = 6 and 8, an upper critical solution temperature (UCST) was found. To clarify the mechanism of the UCST-type phase separation, small-angle neutron scattering (SANS) experiments were conducted on the [C8mim][TFSI]-1,4-DIO-d8 system at several x1,4-DIO. The critical exponents of γ and ν determined from the SANS experiments showed that phase separation of the system at the UCST mole fraction occurs via the 3D-Ising mechanism, while that on both sides of UCST occurs via the mean field mechanism. Thus, the crossover of mechanism was observed for this system. The microscopic interactions among the cation, anion, and 1,4-DIO were elucidated using 1H and 13C NMR and IR spectroscopic techniques, together with the theoretical method of molecular dynamics (MD) simulations. The results on the microscopic interactions suggest that 1,4-DIO molecules cannot strongly interact with H atoms on the imidazolium ring, while they interact with the octyl chain of the cation through dispersion force. With a decrease in temperature, 1,4-DIO molecules gradually aggregate to form 1,4-DIO clusters in the binary solutions. The strengthening of the C-H⋯O interaction between 1,4-DIO molecules by cooling is the key to the phase separation. Of course, the electrostatic interaction between the cations and anions results in the formation of IL clusters. When IL clusters are excluded from 1,4-DIO clusters, liquid-liquid phase separation occurs. Accordingly, the balance between the electrostatic force between the cations and anions and the C-H⋯O interaction between the 1,4-DIO determines the 3D-Ising or the mean field mechanism of phase separation.

6.
J Phys Chem B ; 124(36): 7857-7871, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32790364

RESUMO

In this study, we examined the low-frequency spectra of 1-methyl-3-octylimidazolium tetrafluoroborate ([MOIm][BF4]) mixtures with methanol (MeOH), acetonitrile (MeCN), and dimethyl sulfoxide (DMSO), which were obtained by femtosecond Raman-induced Kerr effect spectroscopy (fs-RIKES) and molecular dynamics (MD) simulations. In addition, we estimated the liquid properties of the mixtures, such as density ρ, surface tension γ, viscosity η, and electrical conductivity σ. The line shapes of the low-frequency Kerr spectra of the three [MOIm][BF4] mixture systems strongly depend on the mole fraction of the molecular liquid, XML. The spectral intensity increases with increasing XML of the [MOIm][BF4]/MeCN system but decreases for the [MOIm][BF4]/MeOH and [MOIm][BF4]/DMSO systems. These behaviors of the spectral intensities reasonably agree with the vibrational density-of-states spectra when the polarizability anisotropies of MeOH, MeCN, DMSO, and ion species are considered. The characteristic frequencies (first moments, M1) of the low-frequency spectra of the three mixture systems are almost insensitive at XML = 0-0.6. However, the frequencies vary mildly at XML = 0.6-0.9 and dramatically at XML = 0.9-1. The XML-dependent M1 in the Kerr spectra are well reproduced by the MD simulations. Plots of M1 versus bulk parameter, (γ/ρ)1/2, for the three mixture systems show that the mixtures at XML = 0-0.6 behave like aromatic cation-based ionic liquids (ILs), those at XML = 0.9-1 are molecular liquids (MLs), and those at XML = 0.6-0.9 are transitioning between aromatic cation-based ILs and MLs. MD simulations show that the solvent molecules localized at the interface between the ionic and the alkyl group regions without forming large solvent networks at XML = 0-0.6. However, solvent networks or regions develop largely at XML = 0.6-0.9 and the constituent ions of the IL disperse in the MLs at XML = 0.9-1. The MD simulations corroborate the results obtained by fs-RIKES.

7.
Phys Chem Chem Phys ; 22(9): 5332-5346, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32096511

RESUMO

The mixing states of an imidazolium-based ionic liquid (IL), 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][TFSI]), with cycloethers, tetrahydrofuran (THF), 1,4-dioxane (1,4-DIO), and 1,3-dioxane (1,3-DIO), have been clarified on the meso- and microscopic scales using small-angle neutron scattering (SANS), IR, and NMR experiments and molecular dynamics (MD) simulations. SANS profiles of [C4mim][TFSI]-THF-d8 and -1,4-DIO-d8 solutions at various mole fractions xML of molecular liquid (ML) have shown that [C4mim][TFSI] is heterogeneously mixed with THF and 1,4-DIO on the mesoscopic scale, to a high extent in the case of the latter solution. In fact, [C4mim][TFSI] and 1,4-DIO are not miscible with each other above the 1,4-DIO mole fraction x1,4-DIO of 0.903, whereas the IL can be mixed with THF over the entire range of THF mole fraction xTHF. The results of IR and 1H and 13C NMR measurements and MD simulations showed that cycloether molecules are more strongly hydrogen-bonded with the imidazolium ring H atoms in the order of THF > 1,3-DIO > 1,4-DIO. Although 1,4-DIO and 1,3-DIO molecules are structural isomers, our results point out that 1,4-DIO cannot be strongly hydrogen-bonded with the ring H atoms. The solvation of [TFSI]- by cycloethers through the dipole-dipole interaction promotes hydrogen bonding between the ring H atoms and cycloethers. Thus, 1,4-DIO with the lowest dipole moment cannot easily eliminate [TFSI]- from the imidazolium ring. This results in the weakest hydrogen bonds of 1,4-DIO with the ring H atoms. 2D-NMR of 1H{1H} rotating-frame nuclear Overhauser effect spectroscopy (ROESY) showed the interaction of the three cycloethers with the butyl group of [C4mim]+. 1,4-DIO mainly interacts with the butyl group by the dispersion force, whereas THF interacts with the IL by both hydrogen bonding and dispersion force. This leads to the higher heterogeneity of the 1,4-DIO solutions compared to the THF solutions.

8.
Phys Chem Chem Phys ; 21(6): 3154-3163, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30675887

RESUMO

In the room-temperature ionic liquid (IL) of 1-methyl-3-octylimidazolium bis(trifluoromethylsulfonyl)amide ([C8mim][TFSA]), the complex formation of Ni2+ with molecular liquids (MLs), dimethyl sulfoxide (DMSO), methanol (MeOH), and acetonitrile (AN), has been examined using ultraviolet (UV)-visible spectroscopy. The overall stability constants log ßn, enthalpies , and entropies of the equilibria have been determined to elucidate the mechanism of complex formation. From a comparison of such thermodynamic parameters of the present [C8mim][TFSA] systems with those of the previous systems of 1-ethyl-3-methylimidazolium-based IL, [C2mim][TFSA], the effects of the octyl chain of the imidazolium cation, [C8mim]+, on the complex formation of Ni2+ with MLs have been demonstrated. In [C8mim][TFSA]-ML systems, more stable complexes are formed with MLs in the sequence of AN > DMSO ≫ MeOH. This sequence differs from that of DMSO ≫ AN > MeOH in [C2mim][TFSA]. For the AN systems, the stabilities of [Ni(an)n] in [C8mim][TFSA] are higher as compared to those in [C2mim][TFSA]. In contrast, for the DMSO systems, [Ni(dmso)n] is less stable in the IL with the longer alkyl chain than that in the IL with the shorter chain. The dependence of the alkyl chain length on the stabilities of [Ni(meoh)n] is the least significant among the three MLs. These varieties of the stabilities of Ni2+ complexes with the MLs have been interpreted from the thermodynamic parameters, together with the static interactions in the [C8mim][TFSA]-ML and [C2mim][TFSA]-ML solvents observed by means of 1H and 13C NMR, small-angle neutron scattering (SANS), and infrared (IR) with an ATR diamond prism.

9.
Phys Chem Chem Phys ; 20(18): 12858-12869, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29700523

RESUMO

The hydrogen bonds of the imidazolium-ring H atoms of ionic liquids (ILs), 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amides ([Cnmim][TFSA], n = 2 to 12 where n represents the alkyl chain length), with the O atom of dimethyl sulfoxide (DMSO) have been elucidated using 1H, 13C, and 15N NMR spectroscopy and soft X-ray absorption and emission spectroscopy (XAS and XES). Density functional theory (DFT) calculations have been performed on an isolated DMSO molecule and two cluster models of [Cnmim]+-DMSO by hydrogen bonding to interpret the XES spectra for the [Cnmim][TFSA]-DMSO solutions. The 1H and 13C NMR chemical shifts of the imidazolium ring showed that deshielding of the ring H and C atoms is moderate as the DMSO mole fraction xDMSO increases to ∼0.8; however, it becomes more significant with further increase of xDMSO. This finding suggests that the hydrogen bonds of the three ring H atoms with the DMSO O atoms are saturated in solutions with xDMSO increased to ∼0.8. The 1H and 13C chemical shifts of the alkyl chains revealed that the electron densities of the chain H and C atoms gradually decrease with increasing xDMSO, except for the N1-bound carbon atom C7 of the chain. The 15N NMR chemical shifts showed that the imidazolium-ring N1 atom which is bound to the alkyl chain is shielded with increasing xDMSO in the range from 0 to 0.8 and is then deshielded with further increase of xDMSO. In contrast, the imidazolium ring N3 atom is simply deshielded with increasing xDMSO. Thus, the electron densities of the alkyl chain may be condensed at the C7 and N1 atoms of [Cnmim]+ by the hydrogen bonding of the ring H atoms with DMSO. The hydrogen bonding of DMSO with the ring results in low-energy shifts of the XES peaks of the O K-edge of DMSO. Small-angle neutron scattering experiments showed that [Cnmim][TFSA] and DMSO are homogeneously mixed with each other on the mesoscopic scale. This results from the strong hydrogen bonds of DMSO with the imidazolium-ring H atoms.

10.
J Pharmacol Sci ; 95(2): 228-33, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15215647

RESUMO

The objective of this study was to evaluate serum nitrite and nitrate (nitrite/nitrate) concentrations that affect adversely pregnancy outcome. Pregnant rats, from day 2 to day 8 of pregnancy, were daily given subcutaneously several doses (5, 10, and 30 mg/rat) of diethylenetriamine-nitric oxide (DETA/NO). Serum nitrite/nitrate concentrations were measured using an HPLC system. Serum nitrite/nitrate concentrations increased dose-dependently with DETA/NO. Effects of DETA/NO on pregnancy outcome were assessed on day 14 of pregnancy. In rats given 5 mg DETA/NO, there was a significant increase in serum nitrite/nitrate concentrations (49.2 vs 24.6 micromol/l, P<0.001), and both placental weight and fetal weight decreased compared to control rats. Macroscopic bleeding in placenta was frequently observed in rats given DETA/NO. We further studied effects of DETA/NO on cultured trophoblastic BeWo cells. DETA/NO added to the culture medium increased nitrite/nitrate concentrations in the medium in a dose-dependent manner. Nitrite/nitrate concentrations in the medium over four times the concentration of control decreased progesterone in the medium at 24 h after the application of DETA/NO. The hormonal secretion was not affected by DETA only. This study shows for the first time nitrite/nitrate concentrations affecting adversely pregnancy outcome and function of the trophoblastic cells.


Assuntos
Nitratos/sangue , Nitritos/sangue , Resultado da Gravidez , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Gonadotropina Coriônica/metabolismo , Meios de Cultura , Feminino , Peso Fetal/efeitos dos fármacos , Meia-Vida , Hormônios/metabolismo , Humanos , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Placenta/efeitos dos fármacos , Placentação , Poliaminas/farmacologia , Gravidez , Progesterona/metabolismo , Ratos , Ratos Wistar , Trofoblastos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...