Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 85(11): 11E118, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430297

RESUMO

Neutron and γ-ray (n-γ) discrimination with a digital signal processing system has been used to measure the neutron emission profile in magnetic confinement fusion devices. However, a sampling rate must be set low to extend the measurement time because the memory storage is limited. Time jitter decreases a discrimination quality due to a low sampling rate. As described in this paper, a new charge comparison method was developed. Furthermore, automatic n-γ discrimination method was examined using a probabilistic approach. Analysis results were investigated using the figure of merit. Results show that the discrimination quality was improved. Automatic discrimination was applied using the EM algorithm and k-means algorithm.

2.
Rev Sci Instrum ; 85(11): 11E120, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430299

RESUMO

Two types of DD neutron energy spectrometer (NES) are under development for deuterium plasma operation in KSTAR to understand behavior of beam ions in the plasma. One is based on the state-of-the-art nuclear emulsion technique. The other is based on a coincidence detection of a recoiled proton and a scattered neutron caused by an elastic scattering of an incident DD neutron, which is called an associated particle coincidence counting-NES. The prototype NES systems were installed at J-port in KSTAR in 2012. During the 2012 and 2013 experimental campaigns, multiple shots-integrated neutron spectra were preliminarily obtained by the nuclear emulsion-based NES system.

3.
Rev Sci Instrum ; 81(10): 10D309, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033835

RESUMO

Neutron spectrometer based on coincident counting of associated particles has been developed for deuterium plasma diagnostics on Large Helical Device (LHD) at the National Institute for Fusion Science. Efficient detection of 2.5 MeV neutron with high energy resolution would be achievable by coincident detection of a scattered neutron and a recoiled proton associated with an elastic scattering of incident neutron in a plastic scintillator as a radiator. The calculated neutron spectra from deuterium plasma heated by neutral beam injection indicate that the energy resolution of better than 7% is required for the spectrometer to evaluate energetic deuterium confinement. By using a prototype of the proposed spectrometer, the energy resolution of 6.3% and the detection efficiency of 3.3×10(-7) count/neutron were experimentally demonstrated for 2.5 MeV monoenergetic neutron, respectively.

4.
Rev Sci Instrum ; 81(10): 10D310, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033836

RESUMO

Deuterium experiment on the Large Helical Device (LHD) is now being planned at the National Institute for Fusion Science. The fusion product diagnostics systems currently considered for installation on LHD are described in this paper. The systems will include a time-resolved neutron yield monitor based on neutron gas counters, a time-integrated neutron yield monitor based on activation techniques, a multicollimator scintillation detector array for diagnosing spatial distribution of neutron emission rate, 2.5 MeV neutron spectrometer, 14 MeV neutron counter, and prompt γ-ray diagnostics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...