Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
ACS Appl Mater Interfaces ; 15(51): 59905-59911, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38084509

RESUMO

We use epitaxial lateral overgrowth (ELO) to produce semimetallic graphene nanostructures embedded in a semiconducting GaAs matrix for potential applications in plasmonics, THz generation and detection, and tunnel junctions in multijunction solar cells. We show that (1) the combination of low sticking coefficient and fast surface diffusion on graphene enhances nucleation selectivity at exposed regions of the substrate and (2) high growth temperatures favor efficient lateral overgrowth, coalescence, and planarization of epitaxial GaAs films over the graphene nanostructures. Our work provides a more complete understanding of ELO using graphene masks, as opposed to more conventional dielectric masks, and enables new types of metal/semiconductor nanocomposites.

3.
Sci Adv ; 8(51): eadd5328, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36563139

RESUMO

The epitaxial growth of functional oxides using a substrate with a graphene layer is a highly desirable method for improving structural quality and obtaining freestanding epitaxial nanomembranes for scientific study, applications, and economical reuse of substrates. However, the aggressive oxidizing conditions typically used in growing epitaxial oxides can damage graphene. Here, we demonstrate the successful use of hybrid molecular beam epitaxy for SrTiO3 growth that does not require an independent oxygen source, thus avoiding graphene damage. This approach produces epitaxial films with self-regulating cation stoichiometry. Furthermore, the film (46-nm-thick SrTiO3) can be exfoliated and transferred to foreign substrates. These results open the door to future studies of previously unattainable freestanding oxide nanomembranes grown in an adsorption-controlled manner by hybrid molecular beam epitaxy. This approach has potentially important implications for the commercial application of perovskite oxides in flexible electronics and as a dielectric in van der Waals thin-film electronics.

4.
Nat Commun ; 13(1): 4014, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851271

RESUMO

Remote epitaxy is a promising approach for synthesizing exfoliatable crystalline membranes and enabling epitaxy of materials with large lattice mismatch. However, the atomic scale mechanisms for remote epitaxy remain unclear. Here we experimentally demonstrate that GaSb films grow on graphene-terminated GaSb (001) via a seeded lateral epitaxy mechanism, in which pinhole defects in the graphene serve as selective nucleation sites, followed by lateral epitaxy and coalescence into a continuous film. Remote interactions are not necessary in order to explain the growth. Importantly, the small size of the pinholes permits exfoliation of continuous, free-standing GaSb membranes. Due to the chemical similarity between GaSb and other III-V materials, we anticipate this mechanism to apply more generally to other materials. By combining molecular beam epitaxy with in-situ electron diffraction and photoemission, plus ex-situ atomic force microscopy and Raman spectroscopy, we track the graphene defect generation and GaSb growth evolution a few monolayers at a time. Our results show that the controlled introduction of nanoscale openings in graphene provides an alternative route towards tuning the growth and properties of 3D epitaxial films and membranes on 2D material masks.

5.
ACS Appl Mater Interfaces ; 13(35): 42146-42153, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34432424

RESUMO

We quantify the mechanisms for manganese (Mn) diffusion through graphene in Mn/graphene/Ge (001) and Mn/graphene/GaAs (001) heterostructures for samples prepared by graphene layer transfer versus graphene growth directly on the semiconductor substrate. These heterostructures are important for applications in spintronics; however, challenges in synthesizing graphene directly on technologically important substrates such as GaAs necessitate layer transfer and annealing steps, which introduce defects into the graphene. In situ photoemission spectroscopy measurements reveal that Mn diffusion through graphene grown directly on a Ge (001) substrate is 1000 times lower than Mn diffusion into samples without graphene (Dgr,direct ∼ 4 × 10-18 cm2/s, Dno-gr ∼ 5 × 10-15 cm2/s at 500 °C). Transferred graphene on Ge suppresses the Mn in Ge diffusion by a factor of 10 compared to no graphene (Dgr,transfer ∼ 4 × 10-16 cm2/s). For both transferred and directly grown graphene, the low activation energy (Ea ∼ 0.1-0.5 eV) suggests that Mn diffusion through graphene occurs primarily at graphene defects. This is further confirmed as the diffusivity prefactor, D0, scales with the defect density of the graphene sheet. Similar diffusion barrier performance is found on GaAs substrates; however, it is not currently possible to grow graphene directly on GaAs. Our results highlight the importance of developing graphene growth directly on functional substrates to avoid the damage induced by layer transfer and annealing.

6.
Phys Rev Lett ; 127(1): 016803, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34270322

RESUMO

The observation of replica bands by angle-resolved photoemission spectroscopy has ignited interest in the study of electron-phonon coupling at low carrier densities, particularly in monolayer FeSe/SrTiO_{3}, where the appearance of replica bands has motivated theoretical work suggesting that the interfacial coupling of electrons in the FeSe layer to optical phonons in the SrTiO_{3} substrate might contribute to the enhanced superconducting pairing temperature. Alternatively, it has also been recently proposed that such replica bands might instead originate from extrinsic final state losses associated with the photoemission process. Here, we perform a quantitative examination of replica bands in monolayer FeSe/SrTiO_{3}, where we are able to conclusively demonstrate that the replica bands are indeed signatures of intrinsic electron-boson coupling, and not associated with final state effects. A detailed analysis of the energy splittings and relative peak intensities between the higher-order replicas, as well as other self-energy effects, allows us to determine that the interfacial electron-phonon coupling in the system corresponds to a value of λ=0.19±0.02, providing valuable insights into the enhancement of superconductivity in monolayer FeSe/SrTiO_{3}. The methodology employed here can also serve as a new and general approach for making more rigorous and quantitative comparisons to theoretical calculations of electron-phonon interactions and coupling constants.

7.
Nat Commun ; 12(1): 2494, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941781

RESUMO

Single-crystalline membranes of functional materials enable the tuning of properties via extreme strain states; however, conventional routes for producing membranes require the use of sacrificial layers and chemical etchants, which can both damage the membrane and limit the ability to make them ultrathin. Here we demonstrate the epitaxial growth of the cubic Heusler compound GdPtSb on graphene-terminated Al2O3 substrates. Despite the presence of the graphene interlayer, the Heusler films have epitaxial registry to the underlying sapphire, as revealed by x-ray diffraction, reflection high energy electron diffraction, and transmission electron microscopy. The weak Van der Waals interactions of graphene enable mechanical exfoliation to yield free-standing GdPtSb membranes, which form ripples when transferred to a flexible polymer handle. Whereas unstrained GdPtSb is antiferromagnetic, measurements on rippled membranes show a spontaneous magnetic moment at room temperature, with a saturation magnetization of 5.2 bohr magneton per Gd. First-principles calculations show that the coupling to homogeneous strain is too small to induce ferromagnetism, suggesting a dominant role for strain gradients. Our membranes provide a novel platform for tuning the magnetic properties of intermetallic compounds via strain (piezomagnetism and magnetostriction) and strain gradients (flexomagnetism).

8.
Phys Rev Lett ; 121(17): 176802, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30411938

RESUMO

The carrier effective mass plays a crucial role in modern electronic, optical, and catalytic devices and is fundamentally related to key properties of solids such as the mobility and density of states. Here we demonstrate a method to deterministically engineer the effective mass using spatial confinement in metallic quantum wells of the transition metal oxide IrO_{2}. Using a combination of in situ angle-resolved photoemission spectroscopy measurements in conjunction with precise synthesis by oxide molecular-beam epitaxy, we show that the low-energy electronic subbands in ultrathin films of rutile IrO_{2} have their effective masses enhanced by up to a factor of 6 with respect to the bulk. The origin of this strikingly large mass enhancement is the confinement-induced quantization of the highly nonparabolic, three-dimensional electronic structure of IrO_{2} in the ultrathin limit. This mechanism lies in contrast to that observed in other transition metal oxides, in which mass enhancement tends to result from complex electron-electron interactions and is difficult to control. Our results demonstrate a general route towards the deterministic enhancement and engineering of carrier effective masses in spatially confined systems, based on an understanding of the three-dimensional bulk electronic structure.

9.
Sci Adv ; 4(6): eaar5832, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29868642

RESUMO

Heusler compounds are a ripe platform for discovery and manipulation of emergent properties in topological and magnetic heterostructures. In these applications, the surfaces and interfaces are critical to performance; however, little is known about the atomic-scale structure of Heusler surfaces and interfaces or why they reconstruct. Using a combination of molecular beam epitaxy, core-level and angle-resolved photoemission, scanning tunneling microscopy, and density functional theory, we map the phase diagram and determine the atomic and electronic structures for several surface reconstructions of CoTiSb (001), a prototypical semiconducting half-Heusler. At low Sb coverage, the surface is characterized by Sb-Sb dimers and Ti vacancies, while, at high Sb coverage, an adlayer of Sb forms. The driving forces for reconstruction are charge neutrality and minimizing the number of Sb dangling bonds, which form metallic surface states within the bulk bandgap. We develop a simple electron counting model that explains the atomic and electronic structure, as benchmarked against experiments and first-principles calculations. We then apply the model to explain previous experimental observations at other half-Heusler surfaces, including the topological semimetal PtLuSb and the half-metallic ferromagnet NiMnSb. The model provides a simple framework for understanding and predicting the surface structure and properties of these novel quantum materials.

10.
J Am Chem Soc ; 139(9): 3473-3479, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28181433

RESUMO

A catalyst functions by stabilizing reaction intermediates, usually through surface adsorption. In the oxygen evolution reaction (OER), surface oxygen adsorption plays an indispensable role in the electrocatalysis. The relationship between the adsorption energetics and OER kinetics, however, has not yet been experimentally measured. Herein we report an experimental relationship between the adsorption of surface oxygen and the kinetics of the OER on IrO2(110) epitaxially grown on a TiO2(110) single crystal. The high quality of the IrO2 film grown using molecular-beam epitaxy affords the ability to extract the surface oxygen adsorption and its impact on the OER. By examining a series of electrolytes, we find that the adsorption energy changes linearly with pH, which we attribute to the electrified interfacial water. We support this hypothesis by showing that an electrolyte salt modification can lead to an adsorption energy shift. The dependence of the adsorption energy on pH has implications for the OER kinetics, but it is not the only factor; the dependence of the OER electrocatalysis on pH stipulates two OER mechanisms, one operating in acidic solution and another operating in alkaline solution. Our work points to the subtle adsorption-kinetics relationship in the OER and highlights the importance of the interfacial electrified interaction in electrocatalyst design.

11.
Nano Lett ; 13(6): 2895-901, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23701166

RESUMO

Arrays of metallic nanostructures embedded within a semiconducting matrix are of great interest for applications in plasmonics, photonic crystals, thermoelectrics, and nanoscale ohmic contacts. We report a method for growing single crystal arrays of semimetallic vertical and horizontal ErSb nanorods, nanotrees, and nanosheets embedded within a semiconducting GaSb matrix. The nanostructures form simultaneously with the matrix and have epitaxial, coherent interfaces with no evidence of stacking faults or dislocations as observed by high-resolution transmission electron microscopy. By combining molecular beam epitaxy growth and in situ scanning tunneling microscopy, we image the growth surface one atomic layer at a time and show that the nanostructured composites form via a surface-mediated self-assembly mechanism that is controlled entirely at the growth front and is not a product of bulk diffusion or bulk segregation. These highly tunable nanocomposites show promise for direct integration into epitaxial semiconductor device structures and also provide a unique system in which to study the atomic scale mechanisms for nucleation and growth.

12.
Phys Rev Lett ; 107(3): 036806, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21838391

RESUMO

The atomic and electronic structures of ErAs nanoparticles embedded within a GaAs matrix are examined via cross-sectional scanning tunneling microscopy and spectroscopy (XSTM/XSTS). The local density of states (LDOS) exhibits a finite minimum at the Fermi level demonstrating that the nanoparticles remain semimetallic despite the predictions of previous models of quantum confinement in ErAs. We also use XSTS to measure changes in the LDOS across the ErAs/GaAs interface and propose that the interface atomic structure results in electronic states that prevent the opening of a band gap.

13.
Nano Lett ; 11(2): 781-5, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21235218

RESUMO

Directed electrochemical nanowire assembly is a promising high growth rate technique for synthesizing electrically connected nanowires and dendrites at desired locations. Here we demonstrate the directed growth and morphological control of edge-supported platinum nanostructures by applying an alternating electric field across a chloroplatinic acid solution. The dendrite structure is characterized with respect to the driving frequency, amplitude, offset, and salt concentration and is well-explained by classical models. Control over the tip diameter, side branch spacing, and amplitude is demonstrated, opening the door to novel device architectures for sensing and catalytic applications.


Assuntos
Cristalização/métodos , Galvanoplastia/métodos , Nanotecnologia/métodos , Nanotubos/química , Nanotubos/ultraestrutura , Platina/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...