Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Imaging Radiat Oncol ; 20: 94-97, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34869923

RESUMO

Metal-based nanoparticles (NPs) have been extensively studied for dose enhancement applications in radiation therapy. This study investigated the utility of such NPs for image-guided radiation therapy (IGRT). Phantom images of gold NPs (AuNPs) and titanium peroxide NPs (TiOxNPs) with different concentrations were acquired using IGRT modalities, including cone-beam computed tomography (CBCT). AuNPs induced strong contrast enhancement in kV energy CBCT images, whereas TiOxNPs at high concentrations showed weak but detectable changes. The results indicated that these NPs can be used to enhance IGRT images as well as dose enhancement for treatment purposes.

2.
Mol Cancer Ther ; 17(2): 432-442, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28939557

RESUMO

Inhibiting p53-dependent apoptosis by inhibitors of p53 is an effective strategy for preventing radiation-induced damage in hematopoietic lineages, while p53 and p21 also play radioprotective roles in the gastrointestinal epithelium. We previously identified some zinc(II) chelators, including 8-quinolinol derivatives, that suppress apoptosis in attempts to discover compounds that target the zinc-binding site in p53. We found that 5-chloro-8-quinolinol (5CHQ) has a unique p53-modulating activity that shifts its transactivation from proapoptotic to protective responses, including enhancing p21 induction and suppressing PUMA induction. This p53-modulating activity also influenced p53 and p53-target gene expression in unirradiated cells without inducing DNA damage. The specificity of 5CHQ for p53 and p21 was demonstrated by silencing the expression of each protein. These effects seem to be attributable to the sequence-specific alteration of p53 DNA-binding, as evaluated by chromatin immunoprecipitation and electrophoretic mobility shift assays. In addition, 5-chloro-8-methoxyquinoline itself had no antiapoptotic activity, indicating that the hydroxyl group at the 8-position is required for its antiapoptotic activity. We applied this remarkable agonistic activity to protecting the hematopoietic and gastrointestinal system in mouse irradiation models. The dose reduction factors of 5CHQ in total-body and abdominally irradiated mice were about 1.2 and 1.3, respectively. 5CHQ effectively protected mouse epithelial stem cells from a lethal dose of abdominal irradiation. Furthermore, the specificity of 5CHQ for p53 in reducing the lethality induced by abdominal irradiation was revealed in Trp53-KO mice. These results indicate that the pharmacologic upregulation of radioprotective p53 target genes is an effective strategy for addressing the gastrointestinal syndrome. Mol Cancer Ther; 17(2); 432-42. ©2017 AACRSee all articles in this MCT Focus section, "Developmental Therapeutics in Radiation Oncology."


Assuntos
Protetores contra Radiação/uso terapêutico , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose , Modelos Animais de Doenças , Humanos , Camundongos , Protetores contra Radiação/farmacologia , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...